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Abstract

The development of ground-water and surface-water irrigation on the eastern
Snake River Plain has necessitated conjunctive management of the ground and surface
water resources. To facilitate this management approach, the ldaho Department of Water
Resources (IDWR) has placed a strong emphasis on the development, use and refinement
of scientific tools which help quantify the impacts of changing water use practices on
ground water and surface water supplies on the eastern Snake River Plain. Recognizing
the importance of the ground-water model as a water management tool, the IDWR, the
State Legislature and the water user community agreed to embark on a model
reformulation process.

Model reformulation was funded as a joint effort between the State of Idaho,
Idaho Power, the U.S. Bureau of Reclamation and the U.S. Geological Survey. The
reformulation was overseen by the Eastern Snake Hydrologic Modeling Committee
(ESHMQ), a collection of scientists and engineers representing the above-identified
agencies and private water user groups. The actual modeling was accomplished by the
[daho Water Resources Research Institute (IWRRI) at the University of Idaho. Major
design alternatives were presented to ESHMC members for discussion and guidance.
The model development was accomplished in an open environment, with acceptance of
design input from all committee members, in an attempt to allay concerns regarding
technical bias.

The technical effort was initiated in 1999 and involved data collection for a 22-
year calibration period (Spring, 1980 through Spring, 2002), establishing a new model

grid and boundary conditions and an exhaustive calibration of the new model. The 22-
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year calibration period was broken into 44 6-month stress periods. The calibration was
accomplished using version 9.0 of PEST (Doherty, 2005), a non-linear parameter
estimation program for data interpretation, model calibration and predictive analysis.
The model was calibrated to approximately 11,000 aquifer water level and river gain/loss
observations. The resulting model, the Enhanced Snake River Plain Aquifer Model
(ESPAM), is a single layer, confined mode! with 104 rows and 209 columns. Each
model grid cell is 1 mile x 1 mile. The model contains 11,451 active cells.

This report documents the enhancement (i.e. design and calibration) of the
ESPAM. As design decisions were made during the life of the project, a series of thirty-
five reports called Design Documents were written and circulated among ESHMC
members for review and comment. The Design Documents contain further details
including design alternatives which were considered and the rationale for selecting a
specific design option. This report details the accounting of recharge and discharge for
the 22-year calibration period, the technical tools used to develop the model, the
observations used for model calibration and comparison of the model-predicted aquifer
water levels and river gains with observed data.' The report cites the various Design
Documents for the reader who is interested in more detail.

As with any model of a complex physical system the ESPAM has limitations and
uncertainties. The ESPAM is a regional-scale model and is best applied for regional-
scale predictions. Additionally, some of the water budget elements and measured
observations are known with greater certainty than others. Further discussion about

model limitations can be found in the section entitled Model Limitations.
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The ESPAM will be used to quantify the impacts of ground-water use on surface

water resources. No attempt is made in this report to address the topic of injury to senior

water rights.
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Introduction
Background and Study Objectives

Ground water and surface water are highly interconnécted on the eastern Snake
River Plain. This report documents the design, development and calibration of the
Enhanced Snake Plain Aquifer Model (ESPAM). The ESPAM will be used by the Idaho
Department of Water Resources to estimate impacts between ground water use and
surface water resources to support water management decisions.

This project was initiated as a joint effort overseen by groups of castern Snake
River Plain (ESRP) water interests. The study was funded jointly by the State of Idaho,
Idaho Power, the U.S. Burean of Reclamation, with in-kind services from the U.S,
Geological Survey (USGS). Technical oversight and input from representatives of these
entities andd water user groups were incorporated in the model development to create the
best possible technical tool for manaéement of ground-water resources on the eastern
Snake River Plain and to which all involved parties could agree is an unbiased
representation of the complex aquifer system. The process, which was established for
allowing oversight and technical input from the interested parties, is described in a later
section.

The ESPAM project had several other objectives in addition to creating a model
which all interested parties could agree to and support, These objectives are: a) to create
a numerical ground-water model of the eastern Snake River Plain aquifer which is
calibrated to a sufficient time period to represent a wide range of aquifer stresses, b) to

improve the model representation of river/aquifer interaction, ¢) to fully document the
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new model including major design decisions and data, and d} to create the model using

state of the art model development methods.

Project Scope

The scope of this project was limited to the reformulation and re-calibration of the
ground-water model used for water management on the eastern Snake River Plain. This
entails the accurate accounting of aquifer recharge and discharge for the modeled period,
an accurate assessment of water use on the castern Snake River Plain, and creation and
calibration of a numerical model to represent the Snake River Plain aquifer. The scope of
the project was limited to model creation and calibration and did not entail generation of
water management scenarios.
The Role of the Eastern Snake Hydrologic Modeling Committee

The ESPAM was created with extensive review and input from the Fastern Snake
Hydrologic Modeling Committee (ESHMC) during the period from 1999 through June,
2005. The ESHMC is comprised of professionals working on water issues on the eastern
Snake River Plain. Regular members include agency representatives (Idaho Department
of Water Resources, U.S. Bureau of Reclamation, U.S. Geological Survey, U.S. Fish and
Wildlife Service), industry representatives (Idaho Power), researchers (University of
Idaho, Idaho Water Resources Research Institute) and private consultants representing
water users on the eastern Snake River Plain. The ESHMC was formed in 1998 and was
a follow-on to the previous Idaho Technical Committee on Hydrology (ITCH) which had
a similar function. The ESHMC was originally formed to allow researchers and water
users a forum for discussing water issues and research on the eastern Snake River Plain

and is chaired by the Idaho Department of Water Resources.
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Shortly after its formation, the ESHMC was tasked to identify the most critical
research needs on the eastern Snake River Plain. The reformulation of the ground-water
model was a high priority identified by the ESHMC. Model reformulation was funded
jointly by the State of Tdaho, Idaho Power and the U.S. Bureau of Reclamation, with in-
kind services provided by the U.S. Geological Survey. Model development was
contracted by IDWR to IWRRI. Program management for the model reformulation was
provided by IDWR. However, realizing the contentious nature of water disputes on the
castern Snake River Plain and, in an effort to temper future disagreement, IDWR elected
to have the model design, construction and calibration overseen by the ESHMC,
IDWR’s goal was to provide insight and input into the model design so that all parties
could attest to the facts that a) the model was created with as little bias as possible and b)
the model was as accurate a representation of the physical system as possible, given the
available data. IDWR further stated the goal that future water disputes on the eastern
Snake River Plain should be focused on policy and not on the science. It was understood
that not every decision would attain complete agreement from all members of the
ESHMC.

TWRRI held approximately quarterly meetings to present project status and
proposed design choices to the ESHMC. The design choices were documented in a series
of technical reports that are called Design Documents. The Design Documents were
distributed to ESHMC members in draft form prior to all design review meetings.

During the design reviews, the ESHMC members received presentations of various
design options. These options would often be discussed at length. Once either consensus

(but not necessarily unanimous agreement) was reached or there was no further
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discussion, the final design decision was documented in a final version of the relevant
Design Document. Many fundamental design decisions were modified specifically in
response to ESHMC guidance. Realizing that the group was being presented with an
extraordinary volume of information and detail during the design reviews, the ESHMC
members were encouraged to provide written comments on specific Design Documents
or on specific design issues as well as oral comments during meetings.

If, in the course of model development or calibration, the technical team
determined that a design decision needed to be changed or required more extensive
Committee review, either a memorandum or a revised version of the Design Document
was distributed to the ESHMC. At every juncture, the ESHMC committee members
were kept apprised of model design options and decisions.

Recognizing that multiple (often disparate) viewpoints were represented at
ESHMC meetings, it was understood that not all design decisions could be made with
unanimous agreement, All major design decisions, however, were discussed at length
and consensus on the design approach was reached among the present parties.
Throughout this report, major design decisions made by the ESHMC members are noted.
The authors recognize that this is an extraordinary approach for ground-water model
documentation; however, the authors feel that the method of model development,
including and soliciting input from interested parties from the very beginning of model
design, was a unique approach aimed at gaining consensus on a potentially contentious

model,
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ESPAM Version
During the preparation of this final project report, some data entry errors were

discovered in the original model calibration, requiring model re-calibration. The data
entry errors were centered around the calibration targets used for the river reaches in the
upper Snake River. The most significant data entry errors were that the measured
irrigation return flow percentages had not been integrated into the model calibration
targets and there was a mismatch in reach integration between the model-predicted and
observed values for the Shelley to Near Blackfoot and Near Blackfoot to Neeley reaches.
These data entry errors were corrected and the model was re-calibrated in May, 2005,
resulting in the release of ESPAM Version 1.1, which is described in this report. These

data entry errors did not significantly affect results of the model simulation.

Study Area Description

The Snake River Plain extends in an arcuate shape across most of southern Idaho
and into eastern Oregon. The plain is divided into eastern and western regions based
primarily on ground-water hydrology. The eastern Snake River Plain is the focus of this
report and entails an area of about 10,000 square miles extending from Ashton, Idaho in
the northeast, southwest to King Hill, Idaho (Figure 1). The boundaries of the plain,
shown in Figure 1, were originally defined by the U.S. Geological Survey’s Regional
Aquifer- System Analysis (RASA) program (Lindholm, 1993) and were modified for this
study (see Geographic Boundary Conditions section). The model boundary shown in
Figure 1 is the modified boundary used for this study. Elevation of the eastern plain
varies from about 2600 feet above sea level in the southwest to over 5000 feet in the

northeast.
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Population within the plain is generally sparse, with most of the population
residing along the eastern and southern margins of the plain in an agriculturally
productive band near the Snake River. Much of the remainder of the plain is federal Jand
managed primarily by the U.S. Bureau of Land Management. Extensive portions of the
plain are covered by rugged basalt outcroppings that include the Craters of the Moon
National Monument.

The Snake River Plain enjoys an arid to semi-arid temperate climate.
Precipitation ranges from about 8 to 14 inches per year, falling predominantly in the
colder months. Irrigation is required for agricultural production. The crops grown vary
with location; the major crops throughout the plain include potatoes, wheat, barley,
alfalfa, and sugar beets. Dry edible beans, corn and peas are grown in the southwestern
part of the valley.

Irrigation on the eastern Snake River Plain began in the late 1800s using water
from the Snake River and its tributaries. Garabedian (1992) describes changes in surface-
water and ground-water irrigated arcas on the eastern Snake River Plain that are shown
graphically in Figure 2. Acreage irrigated by surface water has been declining since the
mid-1940s. Since the onset of ground-water irrigation in the 1950s, the number of acres
irrigated by ground water increased steadily until the early 1990s.

Irrigation practices are continually changing in response to technology and
economic factors. Furrow, flood, and sub-irrigation were the dominant methods of water
application into the second half of the twentieth century. In the 1980s and 1990s
sprinkler systems have commonly replaced surface application methods, with a resulting

decrease in the amount-of water diverted per acre of agricultural land.
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Significant legal developments in the 1990s have dramatically affected water use
on the Snake River Plain. A basin-wide adjudication of water rights was initiated in 1987
(Idaho Water Resources Board, 1996). The ldaho State legislature enacted legislation
affecting the adjudication, including recognition of enlargements in irrigated acreage that
occurred before 1987. A moratorium on expansion of irrigated acreage has been in effect
for the Snake River Basin since 1992. The moratorium includes both surface and ground
water irrigated lands within the basin (Idahd Water Resource Board, 1996). Conjunctive
management rules were adopted by the Idaho Department of Water Resources (IDWR) in
1994, essentially linking administration of ground- and surface-water rights. Water
measurement districts were established in 1996 to provide records of ground-water
pumpage for irrigation. Managed recharge of the Snake River Plain aquifer has also been
supported by the Idaho legislature. Estimates for managed recharge, which has occurred
at various locations through existing irrigation facilities, are listed in Table 1.

The onset of drought conditions in 2000 caused multiple legal actions to be
initiated accelerating the conjunctive administration of surface- and ground-water
resources. It was widely agreed that the old numerical model of the eastern Snake River

Plain was not sufficiently documented to support conjunctive management decisions.

Model History

Numerical ground-water flow models of the Snake River Plain aquifer have been
developed and applied by state and federal agencies, universities, and private interests.
The models vary in purpose, extent, and the computer code employed. The first

numerical model of the aquifer was developed by the University of Idaho for IDWR and
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the U.S. Bureau of Reclamation (deSonneville, 1974). The original IDWR/UT model has
undergone multiple revisions and improvements, described below.

The finite-difference model code developed by the University of Idaho and
evolved by the University and the IDWR will be referred to as the IDWR/UI Ground
Water Flow Model Code. The application of this code to the Snake River Plain aquifer
will be referred to as the IDWR/UI Ground Water Flow Model, following the convention
established by the IDWR (IDWR, 1997a). The IDWR has applied various versions of
this model as a planning and management tool for over two decades.

In the early 1980s, the IDWR/UI Ground Water Flow Model was re-calibrated to
1980-1981 conditions. This re-calibration was able to capitalize on the extensive data
collection effort which the USGS did in support of the Regional Aquifer-System Analysis
(RASA) study of the Snake River plain during that period. In the early 1980s, the USGS
also created a model of the eastern Snake River Plain aquifer for scientific investigations
(Garabedian, 1992).

in 1999, the IDWR/UI Ground Water Flow Model was converted to use one of
the most widely used and accepted ground-water modeling codes, MODFLOW
(McDonald and Harbaugh, 1988). The conversion to MODFLOW was not intended to
create a new model, but to develop an equivalent model using a different code. Model
representation of physical properties such as aquifer transmissivity. storage and
streambed conductance were preserved in this conversion of the IDWR/UI Ground Water
Flow Model to the MODFLOW code. The 1999 MODFLOW application to the Snake
River Plain aquifer will be referred to as the Snake River Plain Aquifer Model (SRPAM),

with the most recent version being SRPAMI.1, There were several benefits gained from
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conversion to the MODFLOW code including: a) the MODFLOW code is accepted as an
industry standard, b) MODFL.OW includes algorithms that simulate physical processes
and have been verified against analytical solutions, ¢) MODFLOW is more familiar to a
wider group of scientists and engineers, d} numerous user interfaces have been developed
for MODFLOW, e) MODFLOW capabilities are continuously increasing, f) MODFLOW
has a significant capability for treating more advanced features such as three-dimensional
flow and variable grid spacing, and g) the MODFLOW code is well documented.

In addition to conversion of the IDWR/UI Ground Water Flow Model to the
MODFLOW code, the model was modified to improve model representation of the
physical system. This was achieved primarily by expansion of the model domain to
include segments of the Snake River and tributaries in the northeast portion of the plain
that were not previously simulated. Additionally, model documentation was significantly
enhanced (Cosgrove and others, 1999; Johnson and others, 1999).

With the potential for rising conflict between surface water and ground water
users on the eastern Snake River Plain, in 2000, IDWR embarked upon a full
reformulation and re-calibration of the ground water model. This effort resulted in the
model which is documented in this report. The resulting model is called the Enhanced

Snake Plain Aquifer Model (ESPAM).

Hydrogeology

Geologic Framework
The surface of the Snake River Plain consists primarily of volcanic rocks, which,

in most areas, are covered by a veneer of windblown or fluvial sediments. Sediment

deposits overlying the basalt vary in thickness from zero to tens of feet. Exposed

A&B 3041



10

volcanic rocks are predominantly basalt, which in places such as the Craters of the Moon
National Monument, cover expansive areas.

The eastern Snake River Plain is composed of a series of relatively thin basalt
flows and interbedded sediments. Flows range in thickness from a few feet to tens of
feet. Welhan and Funderberg (1997) report median flow thickness near the Idaho
National Laboratory ranging from about 7 to 25 feet. Individual flows typically have a
rubble or clinker zone at the top and bottom with a more massive interior containing
fewer vesicles. Vertical fractures in the flow interiors form columnar basalt in some
locations (Garabedian, 1992). Individual basalt flows generally are not extensive
(Welhan and Funderberg, 1997). The collective thickness of basalt flows of the eastern
Snake River Plain is estimated to exceed several thousand feet in places {Whitehead,
1986). More detailed descriptions of the geology of the eastern Snake River Plain are
provided by Anderson (1991), Whitehead (1986), and Kuntz and others (1992).

The eastern plain is bounded structurally by faulting on the northwest and
downwarping and faulting on the southeast (Whitehead, 1986). The plain is bounded by
Yellowstone Group rhyolite in the northeast and Idavada volcanics in the southwest.
Granitic rocks of the Idaho batholith, along with pre-Cretaceous sedimentary and
metamorphic rocks, border the plain to the northwest (Garabedian, 1992).
Surface-Water Hydrology

The Snake River passes along the southern margin of the eastern Snake River
Plain and is the exclusive surface water discharge mechanism for the eastern plain.
Ground water underflow from the eastern plain into the western plain is assumed to be

minimal, due to the more extensive low hydraulic conductivity sedimentary deposits of
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the western plain. Consequently, flow of the Snake River at King Hill is widely
considered to be the equivalent of basin discharge, excluding evaporation. Annual
discharge of the Snake River at King Hill is shown in Figure 3. The cumulative
discharge line in Figure 3 shows little long-term change in slope. This indicates that
despite significant changes in water use during the last several decades, there has been
little change in basin outflow, A possible reason for the stability of the slope of the
cumulative graph in Figure 3 is that human activities have apparently had a greater
temporary impact on aquifer storage than on basin outflow.

The Snake River is intensively managed for irrigation and hydropower
generation. The average annual flow, major inflows and diversions at different points
within the system are illustrated by river width in Figure 4. The flow in the Snake River
is noticeably depleted at Milner Dam where substantial diversions are made for irrigation.
A gradual increase in river flow below Milner Dam is due largely to aquifer discharge in
the form of springs emitting from the wall of the Snake River canyon. North of Idaho
Falls, in the eastern part of the plain, the Henrys Fork (locally referred to as the North
Fork) joins the Snake River, locally referred to as the South Fork, shortly downstream
from Lorenzo, Idaho. The origin of the Henrys Fork is in the Island Park area to the
northeast of the Snake River Plain. Headwaters of the Snake River (South Fork) are in
Yellowstone Park in Wyoming. On average, flow of the Snake River at Lorenzo is about
triple the flow of the Henrys Fork near Rexburg.

Several reservoirs have been constructed on the Snake River and its tributaries for
the purposes of irrigation, flood control, hydropower generation, and recreation, In some

years, spring snowmelt exceeds system storage capacity and irrigation demands and
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water is spilled past Milner Dam. On average, about two million AF of water are
discharged annually past Milner Dam (Figure 5).

Direct tributaries to the Snake River occur primarily from the east and south sides
of the basin. Several streams along the northern margin disappear through seepage
before flows can reach the Snake River (Figure 4). Only flows of the Big and Little
Wood Rivers, Silver Creek (not shown in Figure 4, but tributary to the Big Wood River),
and Camas Creek may eventually reach the Snake River from the northern margin of the
plain, Other streams on the northern margin of the plain, such as the Big and Little Lost
Rivers, contribute recharge to the Snake River Plain aquifer, but do not directly discharge
to the Snake River.

An extensive network of irrigation canals provides water for approximately 1.0
million acres of surface-water irrigated land on the castern Snake River Plain, Technical
reports provide different estimates of surface water irrigated land due to: 1) differences
in the area being evaluated, 2) difficulties discriminating between ground-water and
surface-water irrigated land in some locations, and 3) the application of adjustments for
non-productive lands (e.g. homesteads, roads, ditches) within an area that appears
irrigated in satellite images. In 1980, the U.S. Geological Survey reported 2.1 million
acres of irrigated land (both surface- and ground-water) on the eastern Snake River Plain
(Garabedian, 1992) within the RASA aquifer boundary. For the current study, it was
estimated that there are 1.0 million acres irrigated by surface water and 1.1 million acres
irrigated by ground water, for a total of 2.1 million irrigated acres.

Irrigation diversions consume a large proportion of the flow of the Snake River

during irrigation season. Diversions of surface water for irrigation in the eastern Snake
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River Plain (including all tributaries) have diminished by about 20 percent from the
nearly eight million AF/yr diverted in the early 1970s (IDWR, 1997a). Irrigation
diversions both deplete and affect the timing of flows in the river, with some of the
diverted water returning to the river as either surface or ground water return flows. In
addition, surface water diverted for irrigation also has a major effect on recharge of the
Snake River Plain aquifer as will be discussed in the following section.

Extensive ground water irrigation across the plain also impacts the surface water
resources. Due to the interconnection between the aquifer and the river, water withdrawn
from the aquifer to supply the approximately 1.1 million acres of ground-water irrigated
land either diminishes aquifer discharge to the river or increases river losses to the
aquifer.

Ground-Water Hydrology

The Snake River Plain aquifer underlies the eastern Snake River Plain. This
highly productive aquifer is hosted in fractured basalts and interbedded sediments. The
primary conduit for ground-water flow appears to be the highly permeable rubble zones
that formed at the tops of the numerous basalt flows which comprise the Snake River
Plain. Garabedian (1992) reports median specific capacity on a county basis for 176
wells across the castern plain. The median values ranged from 4 to 950 gallons per
minute per foot of drawdown, with the largest values occurring in counties near the
center of the plain where Quaternary basalts are thickest. The lower values were found
near the margins of the plain where Tertiary basalts and sediments predominate.

Although the collective thickness of the basalt flows may be in excess of several

thousand feet in places, the active portion of the aquifer often is thought to be limited to
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the upper several hundred feet of saturated thickness. Robertson (1974) states that
“Although the real aquifer system is probably more than 1,000 feet thick, a thickness of
250 feet is used in this study based on the apparent layering effects of the aquifer.”
Based on the presence of low permeability sedimentary layers encountered in a well
drilled on the Idaho National Laboratory, Mann (1986) suggests that the aquifer is 450-
800 feet thick. Model studies by the U.S. Geological Survey (Garabedian, 1992)
represent the aquifer as four layers with a collective thickness ranging from 500 to over
3,000 feet. Modeling by the IDWR and the University of [daho (deSonneville, 1974;
Newton, 1978; IDWR, 1997a; Cosgrove and others, 1999) represents the aquifer as a
single layer ranging from 200 to 1,700 feet thick.

The Snake River Plain aquifer generally is considered unconfined; however, in
some locations and under certain conditions the aquifer responds as a confined system.
In some areas, low permeability lakebed sediments create local confining layers
{(Spinazola, 1994). The layered basalts and interbedded sediments also may produce
conditions that appear locally confined, at least when subjected to short duration stress
(Frederick and Johnson, 1996).

The Snake River Plain aquifer is recharged by irrigation percolation; canal,
stream, and river losses; subsurface flow from tributary valleys; and precipitation directly
on the plain. The aquifer discharges to the Snake River, springs along the Snake River
and to ground-water pumping, primarily for irrigation. Figure 6 shows a conceptual
model of recharge and discharge to the Snake River Plain aquifer. The relative
magnitudes of the recharge and discharge components were evaluated by the USGS

(Garabedian, 1992) and, more recently, for this study. Estimates from the USGS
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represent conditions in 1980 for the entire Snake River Plain (Figure 7). Estimates from
the current study represent an average of 1980 through 2001 conditions (Figure 8). The
USGS estimates of water budget components include portions of the plain not included in
the current estimate due to differences in model boundaries (model extent is discussed in
a later section).

Incidental aquifer recharge from irrigation is a significant component of the water
budget and has varied as irrigation practices have evolved. The 1980 water budget of the
USGS (Garabedian, 1992), shown in Figure 7, shows that surface water irrigation
contributes more than 50 percent of the total recharge to the aquifer. Historically,
recharge from surface water irrigation increased as more land was brought info
production up to the 1970s. Since the 1970s, a gradual conversion to sprinkler irrigation
methods reduced the amount of incidental recharge from irrigation.

Natural discharge from the Snake River Plain aquifer is primarily o the Snake
River along two reaches: Kimberly to King Hill, and Near Blackfoot to Neeley. These
reaches are defined by gaging stations shown in Figure 1. Spring discharge has varied in
response to changes in precipitation, irrigated acreage, and irrigation practices. Overall,
discharge in the Kimberly to King Hill reach appears to have been impacted more than in
the Near Blackfoot to Neeley reach (Figure 9), although the Near Blackfoot to Neeley
reach shows more seasonal variation since approximately 1970. The effects of weather
variation and irrigation recharge are apparent from the short-term variation of spring
discharge. Maximum discharge occurs around October, near the end of the irrigation

season. The seasonal variation in the Blackfoot to Neeley and Milner to King Hill
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reaches is about 15 and 20 percent of the respective maximum reach gains (from
interpretation of Kjelstrom, 1995a)}.

Historically, aquifer water levels and corresponding discharges to the Snake River
rose significantly at the onset of surface water irrigation. This is particularly apparent in
the historic discharge in the Milner to King Hill reach shown in Figure 9. Aquifer water
levels peaked around 1950 and have been declining since that time. The declines are
attributed to the onset of ground-water irrigation, more efficient surface water irrigation
practices such as conversion to sprinkler irrigation and canal lining, and the recent seven
years of drought. Historic discharge in the Near Blackfoot to Neeley reach shows a less
dramatic response to historic changes in irrigation practices, however the reach does
exhibit more dramatic seasonal variation since the 1950s.

Other reaches of the Snake River also are hydraulically connected to the aquifer.
In these segments, the river may gain or lose water, depending on river stage and the
water level in the aquifer. The Neeley to Minidoka reach both gains and loses water,
with gains generally exceeding losses. Further upstream, between Heise and Lorenzo,
the South Fork of the Snake River is a seasonally losing stream (Kjelstrom, 1995a).
Average annual loss of this reach was 150 ft*/sec in the 1980 water year. During that
same period, the Lorenzo to Lewisville reach of the main stem of the Snake River and the
lower Henrys Fork reach were estimated to have gained 290 and 120 ft'/sec, respectively
(Garabedian, 1992).

Contours of the potentiometric surface indicate that ground-water flow direction
generally is parallel to the axis of the plain (Figure 10). Steep hydraulic gradients are

apparent near the margins of the plain due to tributary valley inflow and lower
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transmissivity relative to the center of the plain. Steep gradients also are apparent near
the Kimberly to King Hill discharge area due to convergence of flow lines and probable
aquifer thinning. Near the center of the plain and near Mud Lake, steeper gradients
presumably result from decreased transmissivity due to the volcanic rift zone and thick
sediment deposits, respectively. Garabedian (1992) used transmissivities ranging from
4x10° to 1x10” fi¥/day. The SRPAM model had transmissivities which ranged from
2x10* to 5x10° ft/day. These ranges of values are consistent with published values for
fractured basalt.

Aquifer storage in the eastern Snake River Plain aquifer is reasonably high due to
the highly fractured nature of the system. Garabedian (1992) used specific yield values
ranging from .05 to .2 (unitless ratio). Specific yield values used in the SRPAM model
were higher, ranging from .08 to .26, The specific yield values used by Garabedian and
the SRPAM model are consistent with published specific yield values for fractured
basalts in unconfined systems, although many of the SRPAM values are at the upper
limits of published values.

Aquifer water levels have changed significantly over the past several decades in
response to changes in irrigation and variations in weather. Figure [1 shows the water
level changes on the eastern Snake River Plain for the period from spring, 1980 to spring,
2002, This change in water level corresponds approximately to the change in aquifer
storage shown in Figure 8 (Figure 8 shows the change in storage up through 2001).
During that period, water levels across the plain generally declined between 5 and 15
feet, with some areas experiencing declines as great as 20-25 feet. The greatest changes

in water level appear in a band traversing the south-central portion of the plain. Figure
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12 shows water level declines between spring, 2001 and spring, 2002, the last year of the
period shown in Figure 11. The reader will note that water level declines shown in
Figure 12 are almost half of the total decline in the 1980-2002 period, reflecting a rapid
aquifer response to the drought conditions of the year 2001-2002. This suggests that
under long-term, average conditions (1980-2001), water use on the eastern Snake River
Plain was reasonably in balance with use slightly exceeding supply. The rapid decline in
the 2001-2002 year indicates that water level declines occur rapidly under drought
conditions. This general decline in water level is consistent with observed declines in

aquifer discharge to the Snake River.

Model Description

Governing Equations and Model Code
The mathematical equations governing unconfined flow are non-linear due to the

fact that saturated thickness and, therefore, transmissivity, change with time. In confined
systems, saturated thickness is constant, therefore the mathematical representation is
linear.

The ESPAM is a confined representation of the eastern Snake River Plain aquifer.
This decision was made by the ESHM Committee and was consistent with field
observations of the propagation of punping impacts through the aquifer (Frederick and
Johnson, 1996). Additionally, the deep saturated thickness (Whitehead, 1986) supports
the representation of a generally unconfined aquifer as confined since drawdowns in the
highly transmissive aquifer will be less than 10% of total saturated thickness in most
management applications (Anderson and Woessner, 1992). The confined representation

of the eastern Snake River Plain aquifer allows a more stable numerical simulation of the
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aquifer during automated model calibration. ESPAM Design Document DDM-019
discusses the confined representation of the ESPAM. The thickness of the aquifer is
discussed further in the section on Geographic Boundary Conditions.

The general equation governing confined, steady state, anisotripic, heterogeneous

flow in two dimensions is:

a(KH%]+ﬂ k, %00  (Eq1)
ox ax) oy Yoy

where:

K.x is hydraulic conductivity in the x-dimension (ft/d)

K,y is hydraulic conductivity in the y-dimension (it/d)

h is aquifer head (ft)

The general equation governing confined, transient, anisotropic, heterogeneous

flow in two dimensions is:

RPN IR
ox ax) oy U 7 oy or

where:

Ky is hydraulic conductivity in the x-dimension (ft/day)

K,y is hydraulic conductivity in the y-dimension (ft/day)

h is aquifer head (ft)

W is the rate of aquifer recharge (1/day)

S, is specific storage (1/ft)

1 is time (days)

The ESPAM comprises both a steady state and transient, two-dimensional,

isotropic representation of the eastern Snake River Plain aquifer. The isotropic
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representation means that Ky, = Kyy. In a numerical model, individual model cells are

homogeneous. Heterogeneity is represented by the spatial variation of properties such as
transmissivity, on a cell by cell basis. Therefore, the governing equations for a numerical
model are the same as for a homogeneous system. Multiplying Equations 1 and 2 by b/T,

where b is saturated thickness (ft) and T is aquifer transmissivity (ft*/day), yields the

following:
2 2
d 5! + 0 ;h —WE:O (Eq. 3)
ox ay T
and
2 2
0 ? +a fl - £:§% (Eq. 4)
Ox oy r Tot

where:

T is aquifer transmissivity (ft*/day)

h is aquifer head (ft)

W is the rate of aquifer recharge (1/day)

S is storativity (dimensionless)

1 is time (days)

b is aquifer thickness (ft)

Equations 3 and 4 represent the governing equations used for representing
groundwater flow in the ESPAM steady state and transient models, respectively.

Flow between the aquifer and river or drain cells is governed by equations which
are based on Darcy’s law. Darcy’s law is:

dh
Q=-Ka- (Eq.3)
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where:

Q = discharge (ft*/day)

A = cross-sectional area (ft)

K = hydraulic conductivity (fi/day)

dh/dl = hydraulic gradient (dimensionless)

In a numerical model, for both river and drain cells, the hydraulic conductivity
term represents the conductivity of the river-bed or drain sediments which controls the
flow between the river/drain and the aquifer. The gradient (dh/dl) represents the head
differential between river stage (or drain elevation) and aquifer level.

In a finite-difference model, the ground-water flow equation is solved for each
individual model cell and river or drain cell, preserving the mass balance of water. Each
model cell can have individual properties representing aquifer transmissivity and storage.
Similarly, all river and drain cells can have individual properties representing river/drain
elevation and conductance. At every time step of the model, the equations are solved
simultaneously using a numerical solver.

The ESPAM was constructed using MODFLOW2000, a finite-difference code
widely used for ground-water modeling which was created by the U.S. Geological Survey
(McDonald and Harbaugh, 1988, Harbaugh and others, 2000). The ESPAM was
constructed using the Link-Module Gradient {(LMG) solver (Mehl and Hill, 2000),
however, the model can also be run using the Pre-Conjugate Gradient sotver (Hill, 1990).
With the LMG solver, the water budget closure criterion is 00001 and the dampening
parameter is 1.0. The parameter estimation code, PEST version 8.3 (Doherty, 2004) was

used to assist with model calibration.
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MODFLOW2000 was selected because it is considered an industry standard for
finite difference ground-water models. PEST was selected because of adaptability to the
complexity of the model calibration where model results were compared with thousands
of aquifer measurements during the calibration process.

Discretization

Finite difference modeling consists of breaking a large physical area into small
volumes, which are called model cells, and simultaneously solving the numerical
problem (Equations 3, 4 and 5) for each model cell. Additionally, if the model is
transient, the total simulation time is also broken down into smaller time periods and the
problem is solved at the end of each time period. In the case of ground-water modeling,
the problem is being solved to determine aquifer head at each of the model cells and flux
to drains and to/from rivers. This process of breaking the larger pieces down into smaller
pieces is referred to as discretization.

For a uniform grid, the estimated aquifer head for each model cell represents the
head at the center of the cell. If the cells are very large and the gradient is steep,
interpolating head at locations other than at the center of the cell can introduce significant
error.

Spatial Discretization

The spatial discretization of the model study area is the representation of the
eastern Snake River Plain aquifer system in small volumes. The study area was overlain
by a uniform 1 mile x 1 mile grid. The grid was intersected with the model boundary.
Any cell within the model boundary is considered an active cell, or a cell for which

aquifer head would be computed using the model. Any cell outside of the model

A&B 3054



23

boundary is considered an inactive model cell and not part of the calculation of aquifer
head.
Model Grid

The ESPAM grid consists of 104 rows and 209 columns. The grid rows are
numbered with row 1 at the top of the grid. The grid columns are numbered from west to
east, with column 1 being the west-most column. The grid origin is at the outside corner
of model cell (1,1), the most northwest point of the model grid, and is at Idaho
Transverse Mercator (IDTM) coordinates x=378,416.2 m and y=233,007.2 m (in feet:
x=1,241,523 and y=764,459.2, latitude = 43.118806°, longitude=-115.49619 ©). The
reader should note that these [DTM coordinates are in the original IDTM system (IDTM
27) and not the IDTM83 system which was adopted in 2004. For more information on
IDTM coordinates, the reader is encouraged to contact IDWR.

The model grid is rotated 3 1.4° counter-clockwise relative to an east-weat
orientation. The rotation is selected to minimize the number of inactive model cells.
Figure 13 shows the model grid, the origin and the orientation. The grid is comprised of
model cells which are 1 mile x 1 mile square cells (5,280 ft x 5,280 ft). There are 11,451
active model cells. Selection of the 1 mile x 1 mile grid size was consistent with the
density of data available for the study area and the steepness of gradients in the Snake
River Plain aquifer. Figure 14 shows a close-up of the model grid in the Thousand
Springs area (between the Kimberly and King Hill gages) and the density of observation
wells in that area. This gives the reader a sense of the density of available data relative to
the model grid size. Details of the model grid design are available in ESPAM Design

Document DDM-0135.
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Model Layers
The ESPAM of the eastern Snake River Plain aquifer is a single-layer model.

Previous models of the aquifer have contained both single (Cosgrove and others, 1999)
and multiple (Garabedian, 1992) layers. It is generally agreed that the regional eastern
Snake River Plain aquifer resides in a single large stratigraphic unit, consistent with a
single layer model (Whitehead, 1986).

There are localized lenses of sediments in some locations on the plain (the Rigby
Fan and the Burley-Rupert area), which may contain locally elevated water levels. When
the ESPAM was being designed, it was agreed among the ESHMC that the option of
adding a top layer to represent the sedimentary units would be explored only if time
permitted and data were available. Investigation showed that there are little data
available to support calibration of separate layers representing these locally clevated
zones and ESHM Committee members agreed that a single layer model was sufficient.
More information on the choice of using a single layer representation is available in
ESPAM Design Document DDM-003,
Temporal Discretization

The ESPAM includes both a steady state and a transient model. Steady state
simulation does not involve a time factor (Eq. 3). For a transient model, it is necessary to
select a) the total time span for the model calibration period, b) the model stress period
interval and c) the number of time steps in each stress period for which aquifer head and
river gains will be calculated. Decisions on model calibration time span and temporal -
discretization were made by the ESHM Committee.

The criteria used to select the model calibration period included a) the period

should represent a wide range of recharge and discharge, b) reliable data should be
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available for the period, c) the period should be long enough to allow the ground-water
model to adequate.ly predict long-term aquifer trends and d) the period should reflect
current land use and irrigation practices. The ESHM Committee selected a model
calibration period of 22 years, from May, 1980 through April, 2002. The starting date
was selected to coincide with the extensive data collection effort on the eastern Snake
River Plain which was done by the USGS as part of the RASA project. The end date was
originally set one year earlier (April, 2001); however, since the 2001-2002 water year
was an extreme drought year, the choice was made to extend the model end period by one
year to include the 2001-2002 water year. This decision had the added benefit of
allowing the modelers to use field measurements from the 2001-2002 water year., The
period of May, 1980 through April, 2002 includes the wettest year on record (1997),
early drought years (1987-1990) and the starting years of the current drought period
(2000-2002). A calibration period with a wide variation of recharge and discharge results
in calibration targets (river gains, spring discharges and aquifer watet levels) which
provide a better constraint on the calibrated model parameters (aquifer transmissivity and
aquifer storage and riverbed conductance).

In a MODFLOW model, a stress period is the length of time during which aquifer
recharge and discharge (aquifer stresses) are held constant. In the ESPAM, because the
hydrology is dominated by irrigated agriculture, 6-month stress periods (182 days during
the irrigation season and 183 days during the non-irrigation season) were selected. The
irrigation season stress period starts on May 1 and ends on October 31 and the non-
irrigation season starts on November 1 and ends on April 30. The ESHM Committee

agreed that, if calibration were successful with the 44 6-month stress periods, an attempt
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would be made to calibrate with 6-month stress periods representing the first 21 years and
twelve 1-month stress periods representing the last year. This was attempted during
model calibration; however, there was insufficient resolution in many components of the
recharge and discharge data to support the 1-month stress periods. Hence, the final
calibrated ESPAM transient model has 44 6-month stress periods. Table 2 lists the dates
represented by each of the 44 transient stress periods.

In ground-water modeling using MODFLOW the stress period is subdivided into
time steps. The ground-water flow equations are solved at every time step. Even though
the same aquifer stress is being applied during the whole stress period, aquifer water
levels and river gains are changing throughout the stress period (the aquifer water levels
and river gains are responding to the applied stress). By further discretizing time using
time steps, the model predicts these intermediate aquifer water levels and river gains,
allowing comparison of predicted water levels and river gains with measured values and
reducing uncertainty in model predictions. For ESPAM calibration, 10 time steps of
equal length (18.2 days during the irrigation season and 18.3 days during the non-
irrigation season) are used for each model stress period. Since each time step is 18.2 or
18.3 days in length, the net result is that aquifer water levels and river gains are estimated
by the model every 18.2 or 18.3 days during the 22-year calibratioﬁ period.

Model Boundary Conditions

In a numerical ground-water model, the boundary conditions can exert a great
amount of control on the model solutions, particularly for steady state solutions. The
selection of boundary conditions is a critical element of the conceptual design of any

ground-water model.
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The ESPAM employs several types of numerical model boundary conditions.
No-flow boundaries are used around most of the perimeter of the model, simulating the
physical contact between the aquifer and impermeable geologic formations. Specitied
flux boundaries are used to represent tributary underflow, non-Snake River reaches, wells
where water is not locally applied for irrigation, recharge from precipitation on non-
irrigated lands, irrigation conveyance loss and net recharge/discharge from surface- and
ground-water irrigation. Head-dependent boundaries, where the rate of discharge to or
from the aquifer is driven by a head differential between the aquifer and a hydraulically
connected water body (such as a river reach or spring), are employed to represent some
reaches of the Snake River and springs immediately tributary to the Snake River.
Geographic Boundary Conditions

The ESPAM boundary is based on the SRPAM and RASA aquifer boundaries,
with some modifications. Figure 15 shows the ESPAM boundary, the RASA boundary,
the SRPAM mode! boundary and irrigated areas. Because the ESPAM is intended for the
conjunctive management of ground- and surface-water resources, the SRPAM and RASA
boundaries were evaluated based on inclusion of irrigated areas. Modifications were
made to expand the original aquifer boundaries to include irrigated acreage in the
Kilgore, Rexburg Bench, American Falls and Oakley Fan areas (Figure 15). The Twin
Falls tract, which is within the RASA boundary but not the SRPAM boundary, was
excluded since the Snake River is deeply incised between Kimberly and King Hill, so
there is no communication between the aquifers on the north and south sides of the Snake

River.
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In the King Hill area, the RASA boundary extends several miles further to the
west than the SRPAM boundary. The decision was made to include that area in the
ESPAM boundary, allowing inclusion of the King Hill gage on the Snake River. The
model boundary was extended up the Big Lost River drainage to Mackay Dam in order io
simplify the estimate of tributary underflow in that drainage. A result of the expansion of
the model grid (beyond SRPAM) was the inclusion of approximately 294,000 acres of
irrigated lands, which had a significant impact on the model water budget (addressed in a
later section). The ESHM Committee felt, however, that this was necessary to support
the need for model use for conjunctive management of surface- and ground-water
resources.

In addition to the areal extent of the study area, an analysis was done of the
bottom of the aquifer. In hydrogeclogy, the aquifer transmissivity (T) is equal to the
saturated thickness (b} multiplied by the aquifer hydraulic conductivity (K). Since the
bottom of the aquifer is unknowable in many locations, the imperfect understanding of
the saturated thickness is compensated for by adjustments to K during model calibration.
Stating this another way, it is the combined parameter, transmissivity (T=K*b) which is
critical to understanding the movement of water in the aquifer. Neither the hydraulic
conductivity nor the saturated thickness must be individually well understood. Although
not overtly necessary to calibration of a model, knowledge of the bottom of the aquifer is
of interest when interpreting modeling results. An estimate of the bottom of the aquifer
allows the modelers to determine an estimate of hydraulic conductivity based on T and b.

Additionally, when analyzing the potential non-linearities in an aquifer system, an
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understanding of the magnitude of saturated thickness relative to aquifer drawdown is
critical.

Whitehead (1986) published basalt thickness maps for the castern Snake River
Plain. The maps were based on borehole logs and geophysics at a limited number of
locations. The ESHM Committee agreed that a delineation of the bottom of the eastern
Snake River Plain aquifer which was based on Whitehead’s work with an assumption of a
minimum aquifer thickness at the aquifer margins of 200 ft was a reasonable approach.
Figure 16 shows the kriged surface of the bottom of the aquifer assumed for the current
study. Because there are very few data points available for delineation of the botiom of
the aquifer, Whitehead used some presumed data points to delineate the bottom of the
aquifer. For this model, some of Whitehead’s presumed data points were used, some
were modified and several points were established in the Thousand Springs region to
establish the minimum aquifer thickness of 200ft. The locations of these data points are
all shown in Figure 16. Figure 17 shows the locations at the aquifer margin where the
aquifer thickness was set to 200 ft. More details about the determination of the bottom of
the aquifer can be obtained in ESPAM Design Document DDM-012,
Hydrologic Boundary Conditions

Hydrologic boundary conditions are used to represent the interaction of the
aquifer with rivers, streams, lakes and springs. Strictly speaking, the representation of
aquifer recharge and discharge is also a hydrologic boundary condition. The following
sections discuss how rivers, streams and springs are represented in the ESPAM. As
previously mentioned, some reaches of the Snake River and some springs discharging to

the Snake River are represented as head-dependent flux boundaries. Tributary
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underflow, non-Snake River streams and rivers, and irrigation conveyance loss are
represented as specified flux boundaries. All other components of aquifer recharge and
discharge (¢.g. wells and net recharge/discharge from surface- and ground-water
irrigation) are represented as a specified flux in each model cell. Estimation of aquifet
recharge and discharge is discussed in the section on Model Water Budget.
MODFLOW Representation of Head-Dependent Boundaries

Head-dependent boundaries are boundaries where the rate of flux between the
surface water body and the aquifer is dependent upon the head gradient between the
surface water body and the aquifer. Head-dependent boundaries are used to represent
surface water bodies which are hydraulically connected to the aquifer. These surface
water bodies can be either gaining water from or losing water to the aquifer. In the case
of springs, the model representation is strictly a discharge out of the aquifer through the
spring.

The flow between the aquifer and a hydraulically connected surface water body is
governed by Equation 5. In the MODFLOW River Package, Equation 5 is implemented
in terms of a) stage of the surface water body, b) aquifer water [evel and c¢) a conductance
term describing the hydraulic conductivity of the riverbed (or spring) sediments and the
wetted areas of the riverbed. The user specifies river stage, elevation of the bottom of the
river sediments and conductance of the riverbed sediments. As long as the water level in
the aquifer is above the elevation of the bottom of the river sediments, the discharge to

(or from) the river is calculated as:
Qm‘v = Crr'v (hrr'v - haq) (Eq 6)

where:
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Q:iv is the discharge to or from the river (ft*/day)

C. is the riverbed conductance (ft*/day)

h,iv is the head in the river (ft)

haq 15 the head in the aquifer ({t)

Figure 18 shows conceptually how river leakage is calculated in MODFLOW. As
long as the aquifer head is above river bottom, the discharge to or from the river is
calculated based on the head differential. When the aquifer water level drops below the
bottom of the riverbed sediments, the river becomes perched and leaks at a constant rate.

Springs in the ESPAM are represented using the MODFLOW Drain Package.
The Drain Package is identical to the River Package with one important distinction: the
drain package only allows water to exit the aquifer. When the aquifer water level drops
below the drain (spring) elevation, the drain or spring shuts off until the aquifer water
level recovers. The equation governing aquifer discharge to drains in MODFLOW is:

Oy = Capyy —el,) (EQ.7)

where:

Qun is the discharge to the drain (ft’/day)

Cgun is the drain conductance (ft*/day)

hyg is the head in the aquifer (ft)

elgm is the drain elevation (ft)
ESPAM Head-Dependent River Boundariea

Head-dependent river b.oundaries are used in the ESPAM to represent most of the
Snake River above Milner Dam. Two hundred and thirty river cells were established to

represent the Snake River above Milner Dam. Since riverbed conductance is a lumped
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parameter (ie. it represents multiple physical attributes) and impossible to measure, it is
commonly estimated during model calibration. Figure 19 shows the ESPAM head-
dependent river cells and the aggregation into reaches. Water balance calculations
(accomplished using the IDWR Reach Gain and Loss program) indicate that there is
virtually no leakage in the reach between Minidoka and Milner, so the reach is not
represented in the model. Table 3 lists the model cells used in the MODFLOW River
Package and the assigned reach.

The MODFLOW River package requires river stage, elevation of the river bottom
and riverbed conductance for each river cell. Determination of river stage and river
bottom elevation will be discussed in this section. The estimation of riverbed
conductance will be discussed in the section on model calibration. River stage (or
elevation of the river surface) was determined by projecting a GIS coverage of the Snake
River onto the 10 meter digital elevation models (DEMs) available from the USGS.
Once this projection was accomplished, the river elevation was digitized from the DEMs.
The 95% confidence interval on deriving elevations using 10 m DEMs is estimated at
1.21 ft +/- 1.17 ft (ESPAM Design Document DDM-010).

Elevation of the river bottom is important, particularly in reaches which may
transition between hydraulically connected and perched. Estimation of the river bottom
elevation carries a high degree of uncertainty, as it is difficult to measure and may vary
greatly at different locations. Elevation of the river bottom is typically only known at
gaging stations. The ESHM Committee decided that the best approach for estimating the
elevation of the river bottom was to interpolate river bottom depth between the known

points at gaging stations. Using this method, the differential between river stage and the
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bottom of the riverbed ranged between 33 feet and 63 feet. For more information on
estimation of river stage or the elevation of the bottom of the riverbed, the reader is
referred to ESPAM Design Document DDM-010.

Head-Dependent Spring Representation

In the ESPAM, springs discharging to the Snake River in the Thousand Springs
region (between the gaging stations at Kimberly and King Hill) are represented using the
MODFLOW Drain Package. As previously discussed, the Drain Package is very similar
to the River Package in that discharge from the aquifer through the drain is calculated
based on the head differential between the aquifer water level and the drain elevation, If
the aquifer water levels drop below the drain elevation, discharge from the drain ceases
until the aquifer water levels recover. In the Thousand Springs region, the Snake River
flows through a deeply incised canyon, allowing little opportunity for water to discharge
from the river to the aquifer. Therefore, selection of the Drain Package is consistent with
the physical system,

Forty-five drain cells were used to represent spring discharge in the Thousand
Springs area. Unlike the river cells which represent the upper reaches of the Snake River,
the drain cells are not contiguous along the Thousand Springs area. The drain cells were
sited by mapping springs with significant discharge from the Covington and Weaver
(1990) maps published by the USGS. The Covington and Weaver maps were also used
to establish initial drain elevations; however, drain elevations were modified during
calibration (see the section on model calibration). Table 4 lists the model cells

represented with the MODFLOW Drain Package.
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Discharge of individual springs or individual drain cells is difficult to represent
with a regional scale model. Consequently, the ESHMC agreed that drain cells should be
aggregated into reaches that were more consistent with the scale of the model.
Aggregation of the drain cells into reaches was accomplished based on an analysis of a)
discharge of individual groups of springs and b) cumulative discharge of springs along
the entire Thousand Springs reach. Figure 20 shows the cumulative spring discharge
along the Thousand Springs reach starting at Devils Washbowl] (near Milner dam}).
Inspection of Figure 20 shows that there are some natural changes in the slope of
cumulative discharge which supported aggregation of groups of springs into reaches. In
Figure 20, it can be seen that cumulative discharge progresses at a fairly constant slope
between Devils Washbowl and Buhl, At approximately the Buhl gage, the slope of the
cumulative discharge curve increases until the springs at the Thousand Springs power
plant. The springs at the power plant have extremely high discharge, causing a dramatic
rise in cumulative discharge. The slope of the cumulative discharge is lower between
Thousand Springs and Malad, where the cumulative discharge curve has a second
dramatic rise. Between Malad and Bancroft, the cumulative discharge curve again has a
lower slope. Analysis of Figure 20 resulted in the springs being aggregated into the
following six reaches, shown in Figure 21: Devils Washbowl to Buhl, Buhl to Thousand
Springs, Thousand Springs, Thousand Springs to Malad, Malad, and Malad to Bancroft.
The color-coded squares in Figure 21 represent individual model cells where
MODFLOW drains are used to represent spring reaches.

| Initial values of drain conductance for the drain cells along a spring reach were

estimated based on the discharge for the group of springs and the estimated head
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differential between the aquifer and the spring elevation. Drain conductances were
calibrated during model parameterization. This will be discussed further in the model
calibration section, More details on the location of drain cells, aggregation of the spring
reaches and estimation of initial drain conductance can be found in ESPAM Design
Document DDM-018.
Specified Flux Boundaries

Specified flux boundaries are used to represent flow to or from the aquifer which
occurs at an estimated rate and is not driven by a head differential. Specified flux
boundaries are typically used to represent the interface between the aquifer and a water
supply which is not hydraulically connected. In the ESPAM, tributary basin underflow,
percolation from irrigation and precipitation on non-irrigated lands, seepage from
perched rivers and irrigation conveyance losses are represented using specified flux
boundaries. This section describes the specified flux boundaries. The rate of specified
flux used in the ESPAM, including pumping, will be discussed in the Water Budget
section.
Underflow from Tributary Basins

Tributary underflow represents the subsurface discharge of water from a tributary
basin into the eastern Snake River Plain aquifer. Because tributary underflow is
subsurface flow, it is difficult to estimate. Underflow from 22 tributaries is represented
in the ESPAM. Table 5 lists the tributary basins, for which underflow is represented in
the ESPAM. Figure 22 shows the location of each of the tributary basins on the Snake
Plain. In Figure 22, the individual model cells which are used to enter the specified flux

arc highlighted. Appendix A contains a table listing the model cells associated with each
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tributary (Table A-1). The estimated flux for each tributary is evenly distributed across
the model cells assigned to that tributary in each stress period. Estimation of the rate of
tributary underflow discharge is discussed in the water budget section.
Perched River Seepage

The ESPAM has 12 locations at which perched river seepage is represented.
These reaches represent surface water bodies other than the Snake River. Perched
reaches of the Snake River (other than the previously mentioned reach between Minidoka
and Milner) are represented using the MODFLOW River Package. Table 6 lists the non-
Snake River perched reaches. Strictly speaking, not all of the perched reaches are river
reaches. Several flood control sites are represented in the same manner as perched river
reaches. Figure 23 shows the location of each perched reach. The model cells in which
perched seepage is represented are highlighted in Figure 23. Appendix A contains a table
listing the model cells associated with each perched reach (Table A-2). The estimated
flux for each perched reach is evenly distributed across the model cells assigned to that
perched reach in each stress period. Estimation of the rate of perched seepage is
discussed in the water budget section.
Irrigation Conveyance Loss

As irrigation water is delivered to fields, there is leakage from the canals and
laterals. This is referred to as irrigation conveyance loss or canal leakage. The eastern
Snake River Plain has approximately 1,000,000 acres of land irrigated by surface water
which is delivered by canals and laterals. It would be impossible to characterize leakage
from all of the canals and laterals, so leakage is only explicitly represented from the

largest of the canals and canals where the seepage was determined to affect simulation of
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spring discharges. Other canal leakage is assumed to have approximately the same
spatial distribution as incidentél recharge from irrigation and is implicitly included in the
irrigation recharge calculation. Canal leakage rates are estimated as a percentage of
surface water diversions and are discussed in the water budget section.

Leakage from the larger canals is represented in the ESPAM as specified flux
boundaries. The ESPAM has 5 locations at which irrigation conveyance loss is
represented. Table 7 lists the represented canals. Figure 24 shows the location of each
leaky canal and the model cells in which canal seepage is represented. Appendix A
contains a table listing the model cells associated with each canal (Table A-3). The
estimated flux for each canal is evenly distributed across the model cells assigned to that
canal in each stress period.

Model Initial Conditions

Estimates of aquifer head for each model cell at the beginning of a simulation
form the initial model conditions. Of primary concern are initial aquifer water levels or
starting heads for the transient simulation. For the steady state ESPAM, the starting
heads are set at an arbitrary initial value of 7000 ft. Because a steady state simulation is
run until there are no further changes in aquifer water levels, the starting heads are not
important. The simulation will continue running and bala.ncing the water flow between
cach model cell until the system reaches equilibrium and there are no further changes in
water levels.

For the transient ESPAM, the starting water levels are the ending heads from the
steady state model. In the physical system, water levels fluctuate with location and with

season, largely in response to irrigation practices. It is very difficult to accurately
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estimate the water levels throughout the aquifer at an instantaneous point in time, so the
ESHM Committee agreed that using the ending heads from the steady state simulation
was a reasonable point for starting heads for the transient simulation. The ending steady
state heads will represent an average water level condition—high in some locations and
lIow in others. As the transient model progresses in time, the water levels will be driven
by the recharge and discharge and the physical aquifer properties (transmissivity, aquifer
storage and riverbed conductance). This means that changes in aquifer water levels
during the first few years of transient simulation are less meaningful than the later years,

after the initial head conditions have been overcome.

Model Water Budget

The model water budget is one of the most important elements of a ground-water
model, The water budget comprises the accounting of all recharge and discharge to the
aquifer both for the steady state period and for each model stress period. By definition,
steady state means that there are no changes in aquifer water levels (which equates to no
change in aquifer storage). Therefore, for steady state, the inflows must balance with the
outflows (Eq. 3). For each transient stress period, the inflows minus the outflows must
balance with the change in aquifer storage (Eq. 4).

Water use, and therefore the hydrology, on the eastern Snake River Plain is
dominated by irrigated agriculture. The major sources of recharge to the aquifer are
incidental recharge from surface water irrigation, tributary underflow, leakage from
canals and rivers and recharge from precipitation on non-irrigated lands. The major
sources of discharge from the aquifer are evapotranspiration and spring discharges to the

Snake River (Figure 8). There is a lot of natural variation in water supply from year to
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year. Several large reservoirs on the Snake River help to buffer the water supply
available for irrigation, but supply is still limited in some years.

Estimation of the water budget for the ESPAM required estimation of all of the
above-mentioned components. Estimation of some of these components entailed
multiple steps. In addition to the major components of the water budget, there are several
smaller components which were also estimated and are discussed below.

Land Use

One of the first steps in evaluating water use for a study area is an evaluation of
land use. Recharge to the aquifer can vary greatly among different land uses. For
example, on land irrigated with surface water, the amount of irrigation water applied
generally exceeds the consumptive use, so there is a net recharge to the aquifer. On the
other hand, on lands irrigated with groundwater and on wetlands, there is a net extraction
from the aquifer to meet consumptive use. Identifying land use is an important part of
estimating the water budget, particularly in an area where the water use is dominated by
irrigated agriculture, such as in the eastern Snake River Plain.

To evaluate irrigated areas for the ESPAM, multiple sources of data were
evaluated. One of the problems with using land use analyses from different sources is
that it is difficult to discern whether changes in land use reflect actual changes over time
or different analysis techniques. The modeling team did an exhaustive job of comparing
data from multiple sources and ground-truthing the land use analyses, as documented in
ESPAM Design Document DDW-015. Initially, the ESHM Committee decided to
employ land use analyses based on imagery from 1980, 1992 and 2000. The 1980

(RASAS0LC, IDWR, 1980) analysis is a land classification of LANDSAT data
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performed by the ldaho Image Analysis Facility of IDWR (IDWR, 1982), using the
“thematic mapper” LANDSAT sensor and Vicker’s classification algorithms, which are
not directly comparable with later LANDSAT data and methods (Morse, 2001). The
1992 (SNAKLC92, IDWR, 19975) analysis is based on 1987 aerial photography and
extensive field work. The 2000 (ESPAC2000, IDWR, 2002a) classification was
performed by IDWR specifically for this project, using classification of multiple
LANDSAT images, with a two-week to one-month image frequency. These three land
use analyses were initially selected to represent the changes in irrigated area between
1980 and 2002.

During model calibration, comparison of the water budget with the aquifer water
levels and spring discharges indicated that the slight trend of decreasing irrigated acreage
over time, as evidenced by the land use analyses of these three sets of imagery, was
inconsistent with trends in measured modeling targets. Inspection suggested that the
differences in spatial distribution between the three land-cover data sets were minor and
the differences were distant from river or spring reaches of concern. The decision was
made by the ESHM Committee that the final model calibration would use the itrigated
lands analysis which was based on the SNAKLC92 data set for the entire calibration
period. The extensive ground-truthing which was done for the SNAKILC92 data set
provided the highest confidence in the land use analysis.

The location of wetlands was derived from a 1991 analysis of LANDSAT
imagery done by IDWR (SRBAS91LU, IDWR, 1994). Some of the available land use

analyses did not identify wetlands. For the land use analyses which did identify
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wetlands, known wetland locations were ground-truthed. The SRBAS91LU coverage
had the most reliable identification of wetlands.

Identification of cities was compared among the available land use analyses.
2000 LANDSAT images of the City of Idaho Falls were compared with the analyses
which did identify cities. The ESHM Committee agreed that the SRBAS91LU (IDWR,
1994) analysis provided the most accurate delineation of cities. For further details on the
delincation of wetlands and cities, the reader is referred to ESPAM Design Document
DDW-015.

Figure 25 shows a composite coverage of irrigated lands, wetlands, cities and soil
types on non-irrigated lands (to be discussed in a later section). Figure 23 reflects the
land use which was used in compiling the ESPAM recharge and discharge.
Estimation of Recharge/Discharge

Estimation of aquifer recharge and discharge includes estimation of many
intermediate variables which are used to calculate the net recharge to the aquifer. For
example, even though precipitation contributes to aquifer recharge, it is actually used as
an intermediate variable for estimating recharge on surface-water irrigated lands,
discharge from ground-water irrigated lands and recharge on non-irrigated lands. The
reason it is treated as an intermediate variable is that some estimate must be made of the
amount of precipitation which evaporates versus the amount which is available to
recharge the aquifer. Similarly, evapotranspiration on irrigated lands, canal seepage,
irrigation return flows (irrigation water returning to the surface water system which
includes end of canal spills and surface run-off), off-site pumping and crop mix are used

as intermediate variables in the estimation of aquifer recharge and discharge associated
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with irrigation. The next sections will discuss how these variables are used in the
estimation of net aquifer recharge as well as how these variables are estimated.

Other components of aquifer recharge and discharge are estimated directly. These
include tributary basin underflow, perched river seepage, pumping for surface water
replacement and recharge on non-irrigated lands.

The following sections describe a) the estimation of all of the components of the
water budget including both intermediate variables and directly estimated components
and b) how the various components are used in the water budget estimation.

Recharge on Irrigated Lands

Irrigated agriculture can result in a net recharge to the aquifer (surface-water
irrigation) or a net discharge from the aquifer (ground-water irrigation). The land use
analysis described above identified irrigated agriculture, but a separate analysis was
required to delineate surface-water irrigated lands from ground-water irrigated lands.

Estimation of net recharge to the aquifer from surface-water irrigated lands
requires surface watet diversion, irrigation return flow, canal leakage, precipitation and
evapotranspiration data. The calculation is as follows:

Field Delivery = Diversions - Canal Leakage - Return Flows (Eq. 8)
Net Recharge (surface) = (Field Delivery + Precipitation) —
(ET x Adjustment Factor) (Eq. 9)

Ground-water pumping rates have only been measured since the mid-1990s on the
ESRP. The measurement methods are not consistent throughout the plain, so
measurement data is not yet reliable. Additionally, the data that do exist record gross

pumpage and not net extraction. The lack of historical ground-water pumping
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measurement data and the lack of consistency in the measured data required an
alternative method of estimating net discharge from ground-water irrigation. Net
discharge from the aquifer from ground-water irrigated lands is estimated using
evapotranspiration, offset by available precipitation. The rationale behind this method of
estimation is that any ground water which is pumped in excess of crop demand (ET) will
infiltrate back into the aquifer. The calculation is as follows:

Discharge from aquifer = Precipitation - (ET x Adjustment Factor) (Eq. 10)

By agreement, the ESHM Committee and modeling team decided that surface
runoff was negligibly small and could be disregarded for this calculation. Similarly,
because precipitation and ET were estimated for the full year, it was agreed that soil
moisture content could also be neglected.

When the precipitation exceeds the demand, there will be a net recharge to the
aquifer on ground-water irrigated lands. When demand exceeds precipitation, there will
be a net discharge.

Precipitation

Precipitation for the study period was estimated using PRISM (Parameter-
elevation Regressions on Independent Slopes Model) maps produced by the Oregon
Climate Service and the Spatial Climate Analysis Service (Daly and Taylor, 1998).
PRISM uses point data, a digital elevation model, and other spatial data sets to generate
gridded estimates of several spatial and temporal climatic parameters, including
precipitation. A summary of the steps taken to estimate precipitation is provided below.
For more detailed information on the estimation of precipitation for the ESPAM, the

reader is referred to ESPAM Design Document DDW-011,
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PRISM distributes point measurements of monthly, seasonal, and annual
precipitation to a geographic grid of four kilometers by four kilometers. By use of a
resampling algorithm, two-kilometer by two-kilometer resolution grids can be estimated.
These grids are produced in a GIS-compatible latitude-longitude grid or a gridded map
projection.

Monthly PRISM maps for the study area for 1980 through 1997 were obtained
from the Spatial Climate Analysis Service. As of the estimation of the ESPAM water
budget, maps were not available for 1998 through 2002. For consistency in precipitation
data estimation, a method was devised, with the concurrence of the ESHM Committee, to
interpolate precipitation data between weather stations for the years 1998-2002. The
method is described below.

Precipitation data for the years 1998 to 2002 were purchased from NOAA
(http://Iwf.ncde.noaa.gov/oa/ncde.html) for all NOAA stations on the eastern Snake River
Plain. These data series include precipitation values, in inches, and the departure from
normal values, in inches.

In order to maintain precipitation data consistency over the entire 22-year study
period, 1998 to 2002 NOAA data were processed with 30-year average PRISM data to
achieve consistent data formatting with the PRISM two-kilometer by two-kilometer grids
for each monthly precipitation map. This 1998 to 2002 NOAA processed dataset was
then used to supplement the 1980 to 1997 PRISM dataset. A detailed description of the
NOAA data processing follows.

Using the NOAA departures from normal values and the NOAA monthly actual

precipitation values, a normal for each NOAA station was calculated. Then, actual
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precipitation as a fraction of the normal was calculated for each NOAA station. This
resulted in a multiplier which, when muliiplied by the normal value, gave the actual
NOAA precipitation value. A set of multipliers was calculated for each month for the
period of January 1998 to April 2002, Using ArcView3.2, the point-value multipliers
were interpolated to a raster surface of NOAA multipliers. The NOAA multipliers Were
applied to the PRISM 30-year average monthly precipitation déta using ArcView 3.2.
The multiplier datasets were. applied to the 30-year average.PRISM rasters to produce
monthly precipitation rasters for the 1998-2002 period.

Once monthly precipitation maps were generated for the full model period, the
monthly rasters were summed into the same time periods as the ESPAM stress periods.
Figure 26 shows example PRISM precipitation maps for average precipitation for the 22-
year model period, for both the irrigation season and the non-irrigation season.
Inspection of Figure 26 shows the great difference between irrigation season and non-
irrigation season precipitation on the ESRP. Figure 27 shows the annual total
precipitation for each year of the study period. Inspection of Figure 27 shows that there
is a great degree of annual variation in precipitation.

Crop Mix

Knowledge of the mix of grown crops is necessary for the estimation of
evapotranspiration. Differences in crop mix can change average ET by as much as ten
percent, which translates into 1.7 x 10'° fi> (400,000 AF), or approximately seven percent
of the aquifer water budget, assuming two feet of ET on 2,000,000 irrigated acres and a
6,000,000 acre-foot aquifer budget. The final crop mix used for the ESPAM was

calculated based on data from several sources of crop statistics data, as discussed below.
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The primary data source is the National Agricultural Statistics Service (NASS)
crop report data, which are based on county-wide surveys of farm operators. These data
are available in three formats for the study area. These are the Published Estimates Data
Base On Line (USDA, 2000), the US Agricultural Census (USDA, 1992, 1997) and the
Idaho Agricultural Statistics (Idaho Department of Agriculture, 1981 - 2002) reports.
The Published Estimates Data Base On Line (PEDB) version provides county-wide acres
planted and harvested, by crop. These reports do not include alfalfa hay for the earlier
years of the study, so 1982 and 1987 values from the US Agricultural Census (Ag
Census) version of the NASS data for alfalfa were used. The Idaho Agricultural
Statistics (IAS) report was used to fill in gaps in the PEDB potato data. The Agricultural
Census reports provide more detailed results, including details of irrigated and non-
irrigated acreage by county, for the years 1982, 1987, 1992, and 1997. The IAS report is
compiled from NASS data and includes yearly values for irrigated and non-itrigated
acreage, by county, for major crops. As of the time of this study, the IAS data were
available for years 1980 through 2001, Many of the county agents interviewed
recommended the NASS/IAS data.

About half of the counties in the study area have farmed land both inside and
outside the study area (Figure 28). It is possible that the crop mix outside the study area
is different than the mix inside. The potential errors associated with these crop
differences were first assessed by estimating a “reasonable” and “extreme” crop mix for
lands inside the study area, and calculating volume of ET for each. The analysis was
performed for Bonneville and Cassia Counties. The result of the analysis was that

“irrigated only” crop report data provided a better representation of the study area than
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did county-wide data. Therefore, whenever possible, “irrigated only™ (agricultural census
or [AS) data were used.

The final data compilation uses the published Idaho Agricultural Statistics (Idaho
Department of Agriculture 1981 - 2002) data with some refinements, as detailed in
ESPAM Design Document DDW-001. Final crop mix fractions by year and county are
listed in Table A-4 in Appendix A. The crop evapotranspiration estimates compiled from
crop mix data and reference evapotranspiration data indicated that year-to-year variation
in total crop consumptive use is very small. A more detailed description of the evaluation
of crop mix for the ESPAM can also be found in ESPAM Design Document DDW-001.
Evapotranspiration

One of the largest components of discharge on the ESRP is evapotranspiration, a
combined variable encompassing evaporation and plant transpiration. Evapotranspiration
is controlled by climate as well as crop and soil characteristics. Climate affects the
evaporative power of the atmosphere, reflecting the energy available to drive
evapotranspiration and the capacity of air to accept evapotranspired water. Soil and plant
characteristics control the crop’s ability to extract water from the soil, and biological
characteristics of the crop control the transpiration response to evaporative power. Soil
texture, surface wetness and condition and shading by plants control the soil’s response to
evaporative power, Although far more water evapotranspires during the growing season,
there is still measurable evapotranspiration during the non-growing season. For the
ESPAM, growing season ET was estimated separately from non-growing season ET.

Growing season evapotranspiration was estimated primarily using an alfalfa

reference ET scaled by crop coefficients. The alfalfa reference ET is available for each
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NOAA weather station within the ESRP. Allen (2002) evaluated five different E'T
calculation methods. The Kimberly-Penman Alfalfa Reference method was chosen as
most suitable for the modeling application (Allen, 2003). This method was developed
with Idaho empirical data and of the five methods is the most directly comparable to the
reference ET reported in Estimating Consumptive Irrigation Requirements for Crops in
Idaho (Allen and Brockway, 1983) data and to Agrimet (U.S. Bureau of Reclamation,
2003) estimates.

The selected data series provides only reference ET, but calculation of crop ET
also requires crop coefficients (Kc values). Coefficients for individual crops were
extracted from the original Allen and Brockway (1983) data by dividing individual crop
ET by reference ET, for each weather station each month. The original data only include
typically grown crops for each location. To avoid calculating zero ET if an atypical crop
is grown, Kc values for all crops were assigned to all weather stations. Missing values
were supplied from nearby stations. The variation of Kc between weather stations for
any given crop is low (Allen, 2003). Because the data for each county include values for
all typically grown crops, missing values represent rarely-grown crops. Therefore, this
substitution will affect only a few acres within any stress period and has a very low
potentiai of introducing error. An average Kc value was determined for each county
which was an average, weighted according to the proportion of crops, from the nearest
NOAA station data. This was performed for each model stress period.

ET estimation for this project included a remote sensing analysis of ET using the
METRIC algorithm (Allen and others, 2002; Allen and others, 2005; Morse and others,

2000) for the 2001 growing season. METRIC results were used to calculate ET
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adjustment factors. ET adjustment factors allow adjustment of ET to account for
deviations from a perfectly managed crop such as a) water shortage, b) crop disease or ¢)
post-harvest watering. ET adjustment factors may also reflect differences in ET due to
source of irrigation water or method of application. Unique ET adjustment factors were
evaluated for a) sprinkler or furrow application, b) ground water or surface water source
and c¢) irrigation entity. The METRIC analysis indicated that the Kimberly-Pemhan
estimates of ET are consistent with crops which are furrow-irrigated, but that crops
irrigated with sprinklers have approximately 5% higher ET. For the ESPAM calibration,
ET adjustment factors were set at 1.0 for all furrow application and at 1.05 for all
sprinkler application. For more information regarding ET adjustment factors, the reader
is referred to ESPAM Design Document DDW-021.

Though crops do not actively transpire in the winter time, evaporation and
sublimation continue. For the ESPAM, winter-time ET is based on experiment data
collected over several years at Kimberly, Idaho (Wright, 1993). The average winter ET
from the Wright study is reported in Table 8.

Except for February, these values should generally be representative of the entire
study arca. The February value is representative of the lower-elevation portions of the
study area, but February ET for higher elevation areas that are still snow covered in
February is probably closet to the January average from Kimberly (personal
communication, Wright, 2003). Snow increases the reflection of solar radiation back into
the atmosphere, reducing the energy available to drive evaporation or sublimation. To
adjust for differences in snow cover, February ET was scaled by elevation. February ET

at Twin Falls (elev. 3770 feet) was set to 1.0 mm/day, and at Rexburg (4920 feet) to 0.6
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mm/day. ET at other locations was adjusted using linear interpolation between the
elevations at Rexburg and Twin Falls according to the equation:

ET (mm/day) = -0.0003478 x Elevation (feet) +2.3112 (Eq. 11)

For stations higher in elevation than Rexburg, December and January E'T were
adjusted to be no higher than the elevation-adjusted February value. November ET was
adjusted to be no higher than 120% of the adjusted February value. Table 9 lists the
resulting winter-time ET values for all stations, converted to feet per month.

Figure 27 shows the annual total evapotranspiration for each year of the study
period. Tnspection of Figure 27 shows that there is some degree of annual variation in
evapotranspiration, however, ET is relatively constant.

Source of Irrigation Water

Net recharge from surface-water irrigation is the largest component of the water
budget. The second-largest component of the water budget is net withdrawal (calculated
as consumptive use, or evapotranspiration) due to ground-water irrigation. The source of
water for individual parcels must be identified so that diverted volumes of surface water
are applied to the appropriate spatial locations. In the ESRP, aquifer water levels respond
to surface-water irrigation by rising during the irrigation season and declining during the
non-irrigation season. Aquifer response to ground-water irrigation is exactly opposite.

The source of irrigation water also affects the calculation of consumptive use,
which depends in part on evapotranspiration (ET) adjustment factors, application method
(sprinkler or gravity), and the reduction factor for non-irrigated inclusions within
irrigated lands. For an individual parcel, the ET adjustment factor and sprinkler

percentage from the local surface-water irrigation entity or the local ground-water
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irrigation polygon are applied, depending on the water source identified for the parcel.
The source of irrigation water by parcel is also required for model scenarios; for example,
a hypothetical scenario might represent curtailment of a specific source of irrigation.

Water rights data provide the best information regarding source of irrigation water
for each parcel of land. Many irrigated lands are either 100% surface-water irrigated ot
100% ground-water irrigated. However, some irrigated lands have mixed ground water
and surface water sources. This has typically occurred where surface water sources were
inadequate, and supplemental ground water sources have been developed. The following
sections describe the method used to determine the source of irrigation water and the
method used to calculate recharge on mixed-source lands. A more detailed description of
the assignment of irrigation source may be found in ESPAM Design Document DDW-
017.

Geographic Information Systems (GIS) technology and Water Measurement
District and Ground Water District records of actual well diversion volumes have
recently become available. These sources were used for determining the source of
irrigation water, in conjunction with Snake River Basin Adjudication data base records,
which reflect varying degrees of resolution in the adjudication process. The adjudication
data reflect accomplished changes not shown in water rights data. The adjudication data
also represent legitimate “beneficial use” rights perfected before the statutory
requirement to obtain a state permit for a water right. Adjudication claims are the users’
representations of water use, and exist for the entire plain. Recommendations are Idaho
Department of Water Resources’ findings from investigation of claims. As of the time of

this study, recommendations existed for about 2/3 of the study area. The court’s
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determination of the adjudicated water right is called a partial decree. At the time of this
study, partial decrees existed for a much smaller portion of the study area. Not all the
partial decree data were available for automated electronic querying.

The map identifying water source by 40-acre quarter-quarter section is compiled
from IDWR adjudication data with manual adjustments. Using GIS, the map identifying
water source is combined with the map of irrigated lands (Figure 25) to identify irrigation
water source for all irrigated lands. Figure 29 shows the GIS map of water source used in
model calibration.

There are some limitations to the available water rights data. The ground-water
diversion volume data only cover the years 1997 through 2002, and may have missing
values, especially for the earlier years. These data were used to verify irrigation water
source assignment which was based on adjudication data. The adjudication claims are
uninvestigated representations of water users. Recommendations and partial decrees
reflect the legal authorization to use water, not necessarily the actual practice. Because of
the common occurrence of overlapping water rights, the ratio of ground-water to surface-
water rights in a quarter-quarter section is not useful for determining the mix ratio on
mixed-source lands.

Potential errors in the mix ratio apply only to the 13% of the quarter-quarter
sections identified as mixed-source in the adjudication data. The modeling team, in
conjunction with the ESHM Committee, developed a method for apportioning the mixed-
source lands to either ground-water or surface-water irrigation. Consumptive use for
mixed-source irrigated lands was evaluated for each irrigation entity. Assuming a

requirement of 4 feet of delivered water (to meet consumptive use, conveyance loss and
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irrigation inefficiencies), the team estimated how many acres could be satistied by the
recorded diversions. The balance of the irrigated acres was assigned to ground-water
source. It was acknowledged that the actual split may change from irrigation season to
irrigation season depending upon the surface water supply and that no record is kept of
supplemental ground water use. This analysis resulted in approximately 63% of mixed-
source lands within the study area being assigned to a ground-water source (ESPAM
Design Document DDW-017).

The operation of the Fortran recharge tool implicitly adjusts for changes in
ground-water use on mixed-source lands, by the process used to calculate net recharge.
Within the tool, full irrigation requirement (consumptive use minus precipitation) is
applied to all irrigated lands as an aquifer extraction. On lands with surface-water
supplies, net surface-water application is applied as aquifer recharge, offsetting the
required irrigation extraction. For each stress period and each surface-water irrigation
entity, the net depth of surface-water application is calculated based on the diversion and
return data for that stress period. The application depth is based on the full acreage of
surface-water only parcels and a portion of the acreage (based on the source fraction
described above) of mixed-source parcels. Then, within each model cell, the stress-
petiod-specific application depth is applied as an aquifer recharge. The applied water is
pro-rated to mixed-source and surface-water-only parcels based on the source fraction.
Where application exceeds irrigation requirement (surface-water-only parcels) a net
recharge is inferred. Where irrigation requirement exceeds application (mixed-source
parcels) a net withdrawal is inferred. On mixed-source parcels, in years with high

surface-water supplies, the difference between irrigation requirement and surface-water
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supply is small and small amounts of net ground-water pumping on these mixed lands are
represented in the model water budget. When surface-water supplies are low, the
difference is large and large amounts of ground-water pumping are represented.
Reduction for Non-lrrigated Inclusions

The irrigated lands shown in Figure 25 represent the spatial extent of irrigated
areas. However, some portion of these areas is actually non-irrigated areas such as roads,
homes, rock piles and canal banks. During the estimation of recharge and discharge, the
actual square footage of irrigated area in each model cell is reduced by a factor which
accounts for these non-irrigated inclusions. For the ESPAM calibration period, irrigated
areas were reduced by 12%. The reduction factor was determined using a GIS analysis of
individual parcels mapped by IDWR as part of the Snake River Basin Adjudication
(Norquest, 2002)., ESHM Committee members agreed that 12% was a reasonable
estimate for reduction in irrigated areca.

In the GIS/Fortran Recharge Tool (described in Appendix B), the capability exists
to specify a reduction factor for each model stress period by application method. This
enables the user to reflect a potential different reduction factor for sprinkler versus
gravity irrigation for each time period. For the ESPAM calibration, the consensus of the
ESHM Committee members was that the estimate of non-irrigated inciusions derived
from IDWR GIS data, which showed no statistically-significant difference between
sprinkler and gravity application, represented the best available estimate for the irrigated

lands reduction factor.
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Aggregation of Canal Companies into Surface Water Entities
There are more than 100 surface water irrigation companies and numerous private

surface water irrigators within the ESPAM boundary. Many of these irrigation
companies share common acreage. In order to treat all surface water irrigated areas ina
consistent manner, these surface water irrigation companies are aggregated into a smaller
number of ‘irrigation entities.” The aggregated irrigation entities more accurately reflect
the delivery of surface water to the irrigated areas by maintaining a level of resolution
consistent with available diversion and return flow data.

A similar surface water irrigation company aggregation was performed for the
original UI/IDWR SRPAM model. Because GIS software was not available at that time,
the irrigation company aggregation was a more difficult process and took mu-ch longer to
complete. The carlier aggregation resulted in approximately 172,000 acres throughout
the plain being assigned to an un-named surface-water entity.

For the current study, the process of aggregating surface water irrigation
companies entailed evaluating each irrigation company to identify the point of diversion
from the river and the likely corresponding irrigation return flow location. Adjacent
irrigation companies were then examined for similar characteristics, including irrigation
practice, points of diversion, common conveyance, location of irrigation return flow, soil
type, water right priorities, common drainage area, and previous aggregation in the earlier
UI/IDWR SRPAM model. If adjacent irrigation companies did not have any significant
differences from one another, they were aggregated into the same irrigation entity to
maintain a level of irrigation company resolution consistent with the resolution of the

diversion and return flow data.
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Most private water rights within the model boundary were aggregated with the
organized irrigation companies. The private rights that were not aggregated with
adjoining entities are: Camas and Beaver Creek (Basin 31), Birch Creek and Medicine
Lodge Creek (Basin 32), and Little Lost River (Basin 33). The private rights in these
three basins were aggregated separately from each other and from the irrigation
companies because of different practices and water supply than the organized companies.
Source of irrigation water was determined from IDWR adjudication data (see ESPAM
Design Document DDW-017).

Three irrigation companies in the Mud Lake area, including Jefferson Irrigation
Company, Monteview Canal Company Incorporated, and Producers Irrigation Company,
do not use surface water for irrigation. These companies use off-site ground water
pumping and were aggregated as a surface water irrigation entity for model purposes.
With ordinary ground water irrigation, it is assumed for modeling that the pumping and
the recharge occur within the same model cell. This is not the case for the
aforementioned canal companies. The wells used to obtain water are miles from the
place of use and conveyed by a canal. Therefore, in the model, the pumping and recharge
would occur in different model cells, Because many irrigation companies that use off-
site ground water pumping co-mingle the pumped ground water with the surface water in
the canals, the ground water withdrawal was treated as a point extraction assigned to the
model cell. This withdrawal, or volume extracted, was added to the surface water
diversions for the respective irrigation entity. When water master records were not

available to determine the amount of ground water pumped, estimates were made. For
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the three companies mentioned, the surface-water component is set to zero, since there is
no surface-water supply.

The aggregation process resulted in 43 irrigation entities (Table 10). These 43
entities were assigned an identification number (for use by the GIS/Fortran Recharge
Tool) and a descriptive name. Descriptive names were created by choosing the largest
(by area) organized irrigatioﬁ company in the entity, and adding on to that name the
number of organized companies aggregated to create that entity. For example,
agpregated entity IESW16, named “Egin 27, consists of two organized companies, Egin
Bench Canals Inc. and St. Anthony Union Canal Company, of which Egin Bench Canals
Inc. is the larger (by area), of the two companies. (Note that a mid-project recombination
of some of the entities to correspond to new return-flow data resulted in some entities
whose names may violate the “biggest company™ naming convention.) Figure 30 shows
the final set of irrigation entities. For a more detailed description of the aggregation of
canal qompanies into irrigation entities, the reader is referred to ESPAM Design
Document DDW-008.

Delineation of Ground Water Irrigation Polygons

This section describes the designation of portions of the study area into “Ground
Water Irrigation Polygons™ for the purpose of recharge calculation, The withdrawals
associated with irrigation from ground water are a negative recharge and are calculated
based on adjusted ET and precipitation. The ET adjustment factor is applied according to
the geographic location of the irrigated land being calculated and the method used to

apply irrigation water. ET adjustment factor and application method parameters for
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irrigation from ground water are carried as attributes of the ground water irrigation
polygon map.

The goals in constructing the ground water irrigation polygon map were to
adequately represent known differences between geographical arcas and management
practice and to minimize the number of unique ground water polygons (to reduce data
management concerns and recharge tool run times). Because these ground water
irrigation polygons are only used for assigning ET adjustment and application method
parameters for recharge calculation, no requirement was made that polygons be
contiguous areas. Similarly, the ground water irrigation polygons assigned for recharge
calculation are not based on current ground water management areas or measurement
districts, nor is it contemplated that these polygons would form the basis for any
administrative boundaries or decisions.

Because both ET adjustment factor and percent sprinkler application are driven
largely by cost of water, and because the primary cost of ground water is the energy cost
for lifting water out of the ground, depth-to-water was used as the basis for delineation of
the polygons. Relative to the range of depths on the plain, water level changes since
1980 are minor, so a single water table map was deemed adequate for the delineation.
Figure 31 shows the depth-to-water map used for the analysis, digitized from a paper map
created by Lindholm and others (1988).

Pumping lift was hypothesized to influence the cost of water and crop production
and consequently the intensity of management. Regional variations in cropping patterns
and climate throughout the Snake Plain were also considered to be factors in management

intensity. Intensively managed crops are expected to approach the ideal values of crop
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coefficients. Poorly managed crops are expected to exhibit less evapotranspiration.
Depth to water (pumping lift) provided a basis for dividing the Snake River Plain into
GIS polygons. These polygons were then subdivided based on location within the plain.
That is, if a single polygon represented a depth to water of 100 to 200 feet, this polygon
would be divided into two units if this depth range existed in both the southwest and
northeast portions of the plain. The final GIS polygons are presented in Figure 32. The
central portion of the plain is absent of irrigation which is identified as polygon
IEGW600 in Figure 32.

The Mud Lake area and the U.S. Bureau of Reclamation project known as the “A
& B Irrigation District” were the first large-scale applications of ground water on the
plain (Goodell, 1988). These developments pre-dated the widespread use of sprinklers,
while most other ground water development post-dated the use of sprinklers. Field
observations show that the Mud Lake area still has a different mix of application method
relative to other ground-water areas. The same is true of the A & B Irrigation District
(Temple, 2002). For this reason, these two areas were partitioned into their own, unique
ground water irrigation polygons.
Method of Irrigation Application

An analysis was done to identify what percentage of irrigated arcas has been
irrigated by sprinkler versus furrow irrigation throughout the simulation period. Because
actual evapotranspiration may be affected by the type of application system used (as well
as other factors), and because changes in application system type (e.g. conversion from
gravity to sprinkler) have occurred during the period of the study, a method for

identifying application method and describing changes was required. Identification of the
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method of irrigation application on each parcel of land allows application of ET
adjustment factors for deviations from predicted ET which are associated with sprinkler
or furrow irrigation.

Previous modeling efforts have not included an ET adjustment factor, so there has
not been a need to identify application method. Neither Garabedian (1992) nor IDWR
(1997a) explicitly referred to consideration of application method in irrigation
calculations. Goodell (1988) used application method to derive discharge pressure
parameters for pumpage calculations, but not for recharge or ET calculations. IDWR
(19972) adjusted for non-irrigated inclusions based on a distinction between ground water
and surface water, but examination of maps indicates that it is likely the difference is
actually driven by application method, and water source was used as a surrogate.

Available data included Geographic Information Systems (GIS) electronic maps
that delineate the irrigated lands in the study area in 1982 and 1992 as sprinkler or gravity
irrigated (IDWR 1982, 1992). The Natural Resource Conservation Service National
Resource Inventory (NRI) includes a report of a statistical sample indicating percent of
irrigated acres using pressurized (sprinkler) systems by 8-digit Hydrologic Unit Code
area or by Major Land Resource Area (MLRA) (NRCS, 1997). NRCS also classifies
drip irrigation as a pressurized system but this is such a minor practice within the current
calibration period that it is neglected here.

Since the 1982 and 1992 GIS maps represent the most certain data, and the data
with the best spatial resolution, these maps were used as the primary data source. The
NRI data are statistically-based, and quantify percentages, so they were used to establish

overall percentages for 1987 and 1997.
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[nitial tables of sprinkler percentage for each irrigation entity or polygon were
constructed for 1982 and 1992, using GIS and the 1982 and 1992 maps. From the
irrigation entity and water source maps (Figures 29, 30 and 32), all ground-water-
irrigated and mixed-source lands in each ground water polygon, and all surface-water-
irrigated and mixed-source lands in each surface-water entity were identified using GIS
sofiware. These maps were intersected with the application method maps to produce
maps of irrigated lands with appropriate water source, by application method, by ground
water polygon or itrigation entity. The total area of each method, within each entity, was
used to calculate a sprinkler percentage for each entity or polygon. This process was
done for both 1982 and 1992. The result was a table of values, having a unique sprinkler
percentage for each irrigation entity or polygon, for the break-point years 1982 and 1992.

The NRI data were used as a secondary source, to determine sprinkler percentages
for 1980, 1987, 1997 and 2000. Sprinkler percentages for other years were linearly
interpolated between these values. Table 11 lists the ratio of area under sprinkler
application for each ground-water and surface-water entity for each of the years for
which data were available,

The complete table used in model calibration includes values for each stress
period and is presented in Appendix A, Table A-5. Figures 33 and 34 show the spatial
distribution of the sprinkler fractions for the years 1980 and 2000 by surface water
irrigation entity and by ground water polygon, respectively.

Surface Water Irrigation
Net recharge incidental to surface irrigation occurs when more irrigation water is

applied and remains on the field than the crop demands. As noted in Equation 8, field
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delivery is the volume of water diverted minus canal leakage and irrigation return flows.
Net recharge to the aquifer is estimated as the field delivery plus precipitation, less
adjusted ET (Bq. 9). Precipitation and adjusted ET have been discussed in previous
sections. The following sections discuss estimation of irrigation diversions, return flows
conveyance loss and the estimation of net recharge due to surface water irrigation.
Irrigation Diversions

In order to effectively and accurately estimate percolation to the aquifer due to
surface water irrigation, irrigation diversions from the river must be estimated with the
highest possible degree of accuracy. Irrigation return flows to the river and
evapotranspiration are also components of calculating percolation from surface water
irrigation.

For Snake River diversions, two sources of data were considered for use in
estimating surface water irrigation diversions. The first source is irrigation diversion and
return flow ‘raw’ daily data from the water districts, and the second source is ‘processed’
monthly data that is used in the IDWR Reach Gain/Loss Program. For consistency with
the IDWR Reach Gain/Loss Program estimates of reach gains that were used for model
calibration, the ‘processed’ monthly data were used to estimate irrigation diversions.

The diversion data which are used as input to the IDWR Reach Gain/Loss
Program were assigned to appropriate canal companies. The diversion data for each
canal company were aggregated into the appropriate surface irrigation entity by use of a
Microsoft Excel spreadsheet, described below. More information about the estimation of
Snake River surface irrigation diversions is available in ESPAM Design Document

DDW-012.
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Data for surface water diversions from sources other than the Snake River were
primarily available from watermaster records. The actual data were obtained from
various sources, including electronic files from Idaho Department of Water Resources
(2001), paper and microfiche watermaster records (IDWR, 2002b), and other sources. In
the case of watermaster reports, data were generally available as annual summaries.
Monthly fractions were determined by hand calculation from a sample of microfiche or
paper copies of daily watermaster records, and applied to annual data. The irrigation
entities which use some non-Snake River diversions are IESW005, IESW(007, IESWO008,
[ESW0235, IESW029, IESW037, IESW051, IESW052 and IESW054 (see Table 10). A
complete description of the non-Snake River diversion data is available in ESPAM
Design Document DDW-024,

Using both the Snake River and non-Snake River diversions and the aggregated
surface water irrigation entities, a spreadsheet was created in Microsoft Excel to estimate
surface water itrigation diversions for each surface water irrigation entity. This
spreadsheet was also used to perform the calculations to estimate irrigation return flows
to the Snake River, using monthly diversion data and return flow percentages (see section
on Irrigation Return Flows).

The spreadsheet contains separate worksheets for each irrigation entity. Each
worksheet contains the diversion data and return flow factors for all of the irrigation
companies and private irrigators which comprise the associated irrigation entity.

Irrigation return flow factors (discussed in the following section) are applied to
the respective diversion data on each worksheet of the spreadsheet file. The monthly

diversions and returns for each canal company and private irrigator are summed to yield
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the monthly diversions and returns for the irrigation entity. Table A-6 lists the diversion
volume for each irrigation entity for each stress period.
Irrigation Return Flows

Forty-six irrigation returns were measured as part of this study. The sites were
selected and measured in a joint effort between Idaho Power and the U.S. Geological
Survey, with oversight from the ESHM Committee. I[rrigation return flow locations on
the Snake River below American Falls Reservoir were suggested by IDWR to match the
sites used in a study conducted in 1985-86. For the upper Snake River, candidate sites
were identified from a video taken during a helicopter flight over the Snake River above
American Falls and the Henrys Fork.

The site selection was verified through field work. Each selected site was
assigned a standard eight digit USGS gage identification number. Pressure transducers
with data loggers were installed at each site and irrigation return flow data were collected
for the 2002 and 2003 irrigation seasons. The reader should note that both 2002 and
2003 were extraordinarily dry years, so the measured return flows from these two seasons
may not be representative of other years. However, very little measured return flow data
exist for the ESRP. Table 12 lists the site name, location (lat/long) and USGS
identification number for each measured site. Maps of site locations above and below
American Falls are included in Figures 35 and 36, respectively.

Each return flow was assigned to an appropriate irrigation entity as defined in
ESPAM Design Document DDW-008.  The assignment was accomplished using the
maps of irrigation entities (Figure 30) and return flow locations (Figures 35 and 36). The

assignment was made based on location, land elevations and canal locations. Some of the
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returns on the Henrys Fork serviced more than one irrigation entity. The number of
return sites per entity ranged from as many as ten for IESW032 (Twin Falls Southside) to
one site shared by three irrigation entities on the Henrys Fork of the Snake River.

Several entities were grouped together for the purpose of return flow calculation rather
than try to parse the amount diverted from a single diversion between two or more
entities. This procedure resulted in aggregating the returns and diversions into ten unique
groups that were used to calculate the return flow lag factors. Table 13 lists the grouping
of irrigation entities used to estimate return flow percentages. Diversions were summed
for each of the return flow groups. Using measured return flows and an estimate of the
volume of un-measured return flows for each group, a total percentage of irrigation return
flow was estimated. This percentage was used to reduce the total diversion by the
fraction of return flow to estimate how much water to apply to lands irrigated with
surface water. Figure 37 shows the net irrigation diversions (minus return flows) and
return flows for each year.

Tt should be noted that the Milner-Gooding Canal is used to deliver Snake River
water ditectly to irrigation and also to deliver Snake River water into the Big Wood
River, for downstream re-diversion by other canals. The data in their native format
include this water as a Snake River diversion to the Milner-Gooding Canal and also as a
Big Wood River diversion to other canals. To prevent this from causing double-counting
of surface water applied to land surface, deliveries from the Milner-Gooding Canal
directly into the Big Wood River were treated as return flows in the net-diversion

calculations for entity IESW007. Due to this adjustment, the variability of the return-
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flow values shown in Figure 37 is somewhat dampened and the magnitude is somewhat
amplified.

Irrigation diversions and return flows are also used for the estimation of river
gains and losses, which are discussed in a later section. In addition to the return
percentage, the measured return flow data were also used to calculate the lag time of
return flows in support of the estimation of river gains and losses. Examination of typical
hydrographs of surface water returns versus diversion records indicates that there is a
time lag between the timing of the diversions and the timing of the returns. A typical
return flow hydrograph shows an increase as the irrigation season progresses. The
diversions will remain constant or actually decrease during this same time period. The
increase is likely due to increased returns as the fields and canals become saturated.

This phenomenon was dealt with by applying the concept of lag factors. Lag
factors are the portion of the diverted water which returns to the river in each month
following diversion. The lag factors are a time series of ratios. For example, a typical
lag factor series might be (.01, .03, .07, .02, .01). Applied to a single month’s diversion,
this would mean that 1% of the diverted water returns in the first month, 3% in the
second month, 7% in the third month, etc. By applying the lag factor series to the
monthly diversions, the net diversion and return flow for each model stress period can be
calculated, The sum of the lagged factors equals the total return percentage used in
calculating net diversions.

Up to twelve lag factors could be used but more than five were never needed to
obtain a “best fit” to the measured return flow data. The lags were estimated using an

Excel spreadsheet. Measured return flow hydrographs were compared with predicted
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return flow hydrographs. The return flow lag factors used to generate the predicted
return flow hydrographs were adjusted until a reasonable match was obtained between
predicted and measured hydrographs. This process was repeated for each of the ten
groups of irrigation entities. Table 14 shows the final return flow lag factors for each of
the ten groups of irrigation entities. ESPAM Design Document DDW-005 describes the
estimation of return flow lag factors in detail. ESPAM Design Document DDF-007-2002
summarizes the measured return flow data for the 2002 season.

[rrigation entities for which there were no measured return flows were correlated
with one of the ten groups of entities based on a) magnitude of diversions, b) method of
irrigation application, ¢) regional similarity and d) similar crop mix. The return flow lag
factors for the correlated entity were applied to the entity for which there were no
measured return flows. These lag factors were entered into the input data sets for the
IDWR Reach Gain/Loss Program which is used to estimate monthly Snake River gains
and losses.

During model calibration, comparison of net model recharge with measured
hydrographs indicated that there was too much water being applied to the model in the
latter ten years of the calibration period. Inspection of the data indicated that the first ten
years of simulation showed generally high water levels, corresponding to wet hydrologic
conditions and high rates of recharge. This was followed by a decliné in simulated water
levels and then by a return to the high levels simulated for the first wet period. Observed
water levels showed this same general trend, but in the second ten-year period, water
levels did not quite return to the levels observed during the first fen-year period. The

discrepancy between these two temporal patterns suggested that estimated net recharge
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was too high during the latter part of the calibration period. After much discussion, the
ESHM Committee agreed that applying an increase in irrigation returns would serve the
purpose of reducing the net recharge. This adjustment was made to help balance the
water budget and did not imply any knowledge of the trends of irrigation return flows
over time. [rrigation return flows have largely been un-measured on the ESRP despite
the fact that return flows are such an important element of the water budget. The current
study was limited to using measurements from the 2001 irrigation season and some
limited measurements which were made in the 1985-1986 seasons. Efforts to measure
return flows on the ESRP should be continued into the future so that the return flows can
be better characterized and the new information can be incorporated in future modeling
and calibration efforts. Table A-7 lists the return flow volume for each irrigation entity
for each model stress period.
Conveyance Loss

Some of the water lost from irrigation is seepage from canals and ditches. This
water is not available for irrigation and therefore neither available for crop
evapotranspiration (ET) nor for recharge associated with irrigated agricultural fields.
However, the leakage is still a component of recharge associated with irrigation activity.
Seepage from canals can be an important source of aquifer recharge. Long canals in
porous soils can lose 40% or more of the water diverted from the source (Chavez-
Morales, 1985). In Idaho’s climate, virtually all of this loss is associated with leakage to
the aquifer (Dreher and Tuthill, 1999). Canal leakage can be represented by explicitly

identifying leakage rates and locations. Or, a simplified approach can be taken by
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assuming that canal leakage is spatially distributed across the irrigated lands served by
the canal,

Most canal systems have a large main canal or canals, supplying secondary
laterals. These in turn supply individual farm ditches. Because size, construction, and
maintenance of laterals and farm ditches are highly variable, estimating leakage on these
secondary conveyances is difficult. Alternate wetting and drying can damage the “skin of
sediment and biological slime” that helps seal canals. Smaller channels have more
frequent drying cycles, and have more wetted perimeter relative to total flow capacity, so
losses in these ditches are often higher than in main canals (Hubble, 1991). These
laterals and farm ditches are widely distributed across irrigated areas. For these reasons,
the simplified approach often closely reflects reality.

In prior Eastern Snake Plain models, a mixed approach has been taken.
Garabedian (1992) treated three canals - Aberdeen-Springfield (95,000 AF/year), Milner-
Gooding (97,000 AF/year), and Reservation (11,000 AF/year) - as leaky. IDWR (1997a)
treated only the Milner-Gooding Canal as leaky and attributed 146,000 AF of annual
leakage to that canal. Tn both models, all other canal leakage was assumed to have spatial
distribution similar to the spatial distribution of irrigated lands.

In the ESPAM, Northside, Milner-Gooding and Aberdeen-Springfield canals are
represented as leaky. These are high-volume canals with significant leakage along
reaches that do not corfespond with the irrigated places of use. Figure 24 shows a map of
the canals which are represented as leaky in the ESPAM. Some of the canal reaches

shown in Figure 24 are sub-reaches of the three canals mentioned above.
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Seepage is a function of the hydraulic conductivity of the bed material, the wetted
perimeter, and the head (depth of water) in the canal. Because wetted perimeter and head
can vary with flow, there is conceptual justification for using a percentage of flow to
describe leakage. This is sometimes done in irrigation system assessment (Hubble, 1991)
and has been used in aquifer modeling (Booker and others, 1990). Canal leakage can
also be repr.esented as a specified rate (volume per time), which has also been used in
ground-water modeling efforts (Garabedian, 1992).

Because both specified-rate and percentage-based leakage rates are supported in
the literature and can be justified conceptually, either was a candidate for use in the
ESPAM. Since a diversion rate partially controls seepage (apparent from the Chavez-
Morales (1985) data), and since a percentage calculation guarantees that there will never
be leakage calculated in a period without diversions, a percentage-based method was
selected for the ESPAM. Canal leakage was applied to linear GIS features representing
leaky sections of canal. The GIS/Foriran Recharge Tool accommeodates multiple leaky
canal sections per irrigation entity, each with a unique leakage rate. The leakage rate can
also be varied with time. Locations and leakage rates were assigned based on interviews
with canal company personnel and results of previous studies. Some laterals of the
Northside Canal were added in response to comparisons between model-predicted
hydrographs and observed hydrographs at some wells, during early stages of calibration.
For the Northside and Milner-Gooding canals, a constant leakage rate was used
throughout the study period. For the Aberdeen-Springfield canal. unique values were

assigned to each stress period based on canal-company data (Howser, 2002).
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Varying canal seepage within a season may allow a better fit to measured heads in
wells. While it is acknowledged that intra-season variation in canal leakage may occur,
and that these differences may propagate into aquifer heads, data were not available to
adequately represent these conditions for the calibration period. Leakage rates were
based on interviews with canal personnel and checked against values published by
Garabedian (1992) and IDWR (1997a). Because imprecision in calculating canal leakage
affects only the spatial distribution and not the total amount of recharge, and because of
the danger of introducing error by synthesizing data, canal leakage for the model
calibration period was estimated as a constant percentage of diversion volume within
each irrigation season. To allow for future testing of various scenarios, the GIS and
Fortran components of the recharge tool allow unique canal leakage percentages to be
applied to each stress period. The data available from the Aberdeen-Springfield Canal
Company are annual volume totals, so the fractions calculated were based upon annual
volumes. Table A-8 lists the canals, the assigned irrigation entities and the seepage
percentages used during the simulation for each of the canals.

Net Recharge from Surface Irrigation

Net recharge due to surface irrigation is calculated in the GTS/Fortran Recharge
Tool (Appendix B). The GIS component of the tool prepares text data files containing a)
a mapping of surface water entities to model cells within each entity’s service area, b)
reduction factors for non-irrigated inclusions, ¢) ET and precipitation for each model cell
for each stress period, d) ET adjustment factors, ¢) diversion data, return flow

percentages, canal leakage percentages and sprinkler proportion for each model stress
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period for each surface water irrigation entity and f) off-site pumping volume delivered
for irrigation.

For each model cell, for each stress period, the GIS/Fortran Recharge Tool
calculates the net recharge due to surface water irrigation according to Equations 8 and 9.
The net recharge from surface water irrigation is added to other estimated recharge and
discharge (for example, ground-water withdrawals in the same model cell). Figure 37
shows the net recharge due to surface water irrigation for every year of the calibration
period. Inspection of Figure 37 shows that there is approximately a 2 million-acre-ft
variation in net recharge due to surface water irrigation between the highest and lowest
years of the 22-year calibration period. This reflects the great variation in natural water
supply. This also reflects the important role that incidental recharge to the aquifer from
surface water irrigation plays in aquifer recharge.

Ground Water lrrigation

Net discharge from ground-water irrigation is estimated as consumptive use (ET)
offset by available precipitation (Eq. 10). ET adjustment factors are applied to the
estimated evapotranspiration based on source of irrigation water and method of
application. No difference was found between ET for ground-water or surface-water
irrigation. Sprinkler irrigation was determined to consume approximately 5% more water
than furrow irrigation (see ESPAM Design Document DDW-021). Figure 37 shows the
net extraction due to ground-water irrigation. As can be seen in Figure 37, a relatively
constant 2 million AF annually is applied to approximately 1.1 million acres of ground-
water irrigated land. This reflects the relatively constant rate of ET (see Figure 27).

Much of the variation in net extraction due to ground-water irrigation (a variation of
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approximately 900,000 AF) is arguably driven by variation in precipitation
(approximately 1,200,000 AF variation). Figure 38 shows the spatial distribution of the
net extraction due to ground-water irrigation averaged for the 22-year model calibration
period.

Tributary Underflow

Groundwater contributions from tributary basins, or tributary underflows, were
estimated for the new model based on tributary underflow estimates published in
Garabedian (1992). The Garabedian estimates were adjusted in tributary basins where
the ESPAM aquifer boundary differed from the Garabedian aquifer boundary. As part of
the water budget balancing process, all of the tributary underflow estimates were scaled
by a factor of .97 (anet 3% reduction). Table 5 lists the average annual tributary
underflow values used for ESPAM.

Recognizing that tributary underflow varies seasonally and from year to year, the
average annual ESPAM tributary underflow values were scaled using normalized annual
values based on measured discharges at Silver Creek. Silver Creek was selected because
a) it is almost entirely spring-fed and sits on bedrock, b) there is a long-term gage on
Silver Creek and ¢) the flows in Silver Creek reflect spring discharge from a basin which
is similar to many of the Snake Plain aquifer tributary basins from the standpoint of land
use, precipitation, and elevation. It is believed that flow of Silver Creek is more
seasonally variable than underflow in the tributary valley. Therefore, the variation of
Silver Creek discharge was dampened by 2/3 to decrease the amplitude of variation.
Table 15 lists the non-dampened and dampened normalized flows for Silver Creek for

each year of the ESPAM calibration period. The average annual tributary underflow
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discharge for each tributary basin was multiplied by the dampened Silver Creek
normalized flow for cach time period, yielding the contribution from each tributary to the
ground water model for cach stress period. While it is acknowledged that there will be
intra-year variations in flow, lack of knowledge about the basin-to-basin differences in
the timing of peak flow dictated shaping underflow on a year-by-year basis (Table 5).
ESPAM Design Document DDW-004 describes the estimation of tributary underflow: for
the ESPAM in more detail.

Recharge on Non-irrigated Lands

This section discusses calculation of two spatially-distributed components of the
aquifer water budget; recharge from precipitation on non-developed lands and spatially-
distributed recharge and discharge from land uses that comprise a small fraction of the
study area. These minor-use areas are dry farms, cities, and wetlands.

Precipitation on the plain is approximately 6.7 million AF per year, with 80% of
this falling on non-developed lands. Garabedian (1992) estimates that precipitation on
non-developed lands produces 700,000 AF of recharge per year, which equals
approximately 15% of the magnitude of irrigation recharge. It is the component of
recharge to which Garabedian assigns the most uncertainty. The other land uses, dry
farms, cities, and wetlands, represent minor components of the water budget, with a
combined net effect of about 160,000 AF per year (calculated from data reported by
Goodell, 1988).

Recharge on Non-Developed Lands. A method was developed for estimating
recharge from precipitation using GIS grid maps of monthly precipitation (Daly and

others, 1998) and thickness and texture of soil coverage (Figure 25). The developed
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method is suggested by Rich (1951). Rich studied basins which, unlike the Eastern
Snake Plain, had a component of surface discharge. His relationship actually described
total basin yield, but it is simplified here to represent recharge, since runoff that does
occur on the plain collects in depressions where it also recharges the aquifer. The
equation is:

| Recharge = K * (Precipitation)" (Eq. 12)
where K is an empirical slope parameter and N is an empirical exponent that introduces
curvature into the relationship.

Rich applied this formula to annual precipitation. The formula presumes that with
less precipitation, most of the precipitation is intercepted by various mechanisms (leaf
interception, depression storage, soil moisture storage, evaporation, etc.) and that with
increasing precipitation, more of the precipitation is available for infiltration. Parameters
K and N can be adjusted to shape the calculated recharge curves. However, knowing the
actual recharge from precipitation on non-irrigated arid lands is very difficult (Gee,
1988). Attempts to use a water balance to determine the non-irrigated recharge are
frustrated by the fact that another large component of recharge, tributary basin underflow,
is also poorly defined. Consequently, parameters K and N were initially calibrated to
match previous results. ESPAM Design Document DDW-003 contains a detailed
explanation of the estimation of recharge on non-irrigated lands.

Estimates of recharge depth from Equation 12 were performed for three soil
classifications based largely on soil thickness. These calculations employed monthly
estimates of precipitation. Precipitation during Novelﬁber through February was summed

into the February value to represent snowmelt. These calculations were performed
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external to the GIS component of the recharge program but were input to the Fortran
component of the recharge program as monthly recharge depths. A fourth soil
classification was used to represent the minor land uses (cities, wetlands and dry farms).

Within the Fortran component of the recharge program, the recharge depths from
non-developed land were multiplied by the non-irrigated land in each cell. Non-irrigated
land was determined as the difference between the area of a cell and the irrigated area
within the cell. Monthly non-irrigated recharge values were summed to estimate
recharge in each stress period. Figure 39 illustrates the areal distribution of non-irrigated
recharge averaged for the 22-year calibration period.

Recharge on Minor Land Use Types. Several minor land use types were
identified and recharge on these areas was handled separately. The categories of minor
land uses which were identified were: dry farm, water and wetlands and cities and
industrial areas. Table 16 lists the minor land use types, the acres represented by these
types and the recharge rate. On dry farms, the recharge rate was presumed to be zero.
Discharge on wetlands was presumed to be three feet, less precipitation. Discharge for
cities and industrial areas, which is attributable to parks and lawn watering, was
presumed to be 1.2 feet/year. The discharge from wetlands and cities is represented in
Figure 39 as negative recharge. These minor land uses are discussed further in Contor
(2002).

Fixed Point Pumping

Fixed point pumping (or recharge) represents an impact that occurs at a single

point and does not enter into any other recharge calculation. Negative values are applied

directly as an extraction from the model cell that contains the point, and positive values

A&B 3108



77

are applied as a direct injection. Fixed point pumping was used to represent the
following practices: a) pumping where the pumped water is added to a natural water
body to augment the surface water supply and the same water is counted as a diversion
from that surface water body, b) recharge corrections for deficit irrigation on the
Richfield tract and c) recharge correction for wetlands. Table A-9 lists the model cells
where fixed pumping is represented.

Tirigation Wells. In the ESPAM, certain irrigation wells are treated as fixed-point

pumping because the pumped water is delivered to a natural water body and is included
in the water master reported diversion volume of water diverted for irrigation from the
water body. One group includes wells known as “exchange wells,” which pump water
into the Teton River or the Snake River. Their volumes are included as diversions within
the diversion data files from the IDWR planning model (see ESPAM Design Document
DDW-012). The other group of fixed-point wells includes the wells that deliver water
into Mud Lake or Camas Creek in Jefferson County, for diversion to irrigation entity
IESW029. The volume of water pumped from these wells is included within the
diversion volumes reported by Water District 31 (see ESPAM Design Document DDW-
025).

The spatial location of the “exchange wells” class of fixed points was obtained
from GPS data or public land survey legal descriptions supplied by Water District 01
(Madsen, 2000; Olenichak, 2003). Figure 40 shows the location of these exchange wells.

The GIS points for the Mud Lake fixed points and the offsite ground-water
pumping wells were placed to represent groups of physical wells within small local areas.

The actual locations of the physical wells were obtained from IDWR GPS data (IDWR,
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1999) and aerial photography. Figure 41 shows the fixed points in the Mud Lake area,
relative to the model grid, observation wells, and physical pumping wells.

Pumping volume for the “exchange wells” fixed points was obtained from Water
District 01 annual reports (Water Distrtict 01, 2003). These data are complete for the
entire calibration period. The annual reports include monthly pumpage volume for each
well that is active in a given year. The gross pumping volume for the “Mud Lake” fixed
points was obtained from Water District 31 data, as described in ESPAM Design
Document DDW-025. To apportion the Mud Lake volume to individual points, the
number of wells per model cell was adjusted to better reflect field observations of relative
production of individual well groups. The fraction of the total volume assigned to each
point was apportioned to the adjusted number of wells, as shown in Table 17. Any
uncertainty in apportionment represents imprecision in the spatial distribution of
discharge, but not an uncertainty in the water budget.

Richfield Tract Recharge Adjustment. An adjustment was made on the Richfield
tract to account for deficit irrigation conditions. Because most irrigated areas with
limited surface-water supplies have supplemental wells, the GIS/Fortran Recharge Tool
automatically presumes supplemental ground-water pumping whenever surface-water
supplies are inadequate to meet consumptive use demand. For some stress periods this is
an inappropriate calculation for irrigation entity IESW007 (in the Richfield arca), since
deficit irrigation occurs without the opportunity for supplemental ground-water pumping.
This is corrected by applying an offsetting volume to a deficit-irrigation class of fixed
points, in those cells where deficit irrigation occurs without supplemental ground water.

This correction is explained in further detail in ESPAM Design Document DDW-003.
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Deficit irrigation correction volumes were determined by identifying cells without
groundwater where net irrigation from surface-water irrigation was zero or negative.
Using a spreadsheet, a cotrection volume was calculated to offset the indicated negative
recharge.

Wetlands Correction. During model calibration, the need for a correction for

wetlands became apparent. As described in ESPAM Design Document DDW-003,
Recharge on Non-irrigated Lands, a correction was required for model cells that
contained both wetlands and irrigated lands. The GIS/Fortran Recharge Tool applies the
cell-average non-irrigated recharge rate to the non-irrigated lands within each model cell.
When part of the cell is irrigated and part is wetlands, the cell-average rate is biased by
the non-irrigated-recharge rate associated with the soil type on the irrigated lands. This
bias was corrected by applying an offsetting volume to a wetlands class of fixed point
pumping in those cells containing both irrigation and wetlands. Wetlands correction
point volumes were determined by calculating the correct non-irrigated recharge in
individual cells with both wetlands and irrigation, and comparing the volumes to the
volumes calculated by the GIS/Fortran Recharge Tool.

Figure 42 illustrates fixed points used to represent the wetlands and deficit-
irrigation correction points. Table 18 lists the total adjustment to recharge for each stress
period for each category of fixed point well.

Off-Site Ground Water Pumping

Offsite ground water pumping refers to irrigation pumping that is conveyed to a

distant location for application to irrigated lands. It must be accounted as a withdrawal

from the model cell that contains the well and as applied irrigation water to the model
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cells that contain the irrigated lands. While physically this is the same process that is
represented by fixed-point pumping for the exchange wells and Mud Lake wells
described above, the accounting difference is that offsite-pumping volumes have not been
included in a water-master reported diversion volume. They must be added to diversions
within the recharge calculations. In this modeling effort, wells in Jefferson County that
supply water to irrigation entity IESW044 are represented as offsite ground water
pumping. While irrigation entities [ESW001 (A & B Irrigation District) and IESWO018
(Falls Trrigation District) also pump ground water into canals for conveyance to places of
use, their wells are distributed approximately uniformly across the irrigated service area,
similar to other ground-water irrigated arcas within the study area. There is not a need to
spatially separate the extraction and recharge associated with irrigation.

In the Fortran component of the recharge tool, the pumped volume from the
offsite ground water pumping wells is removed from the cells in which the wells are
located, and added to diversions for [IESW044. The entire pumped volume is included in
the irrigated-lands recharge calculation as a contribution towards recharge. Volume-for-
volume, any over-estimate in pumping becomes an over-estimate in irrigated-lands
recharge, and any under-estimate in pumping becomes an under-estimate in recharge.
The inaccuracies balance, so that the only consequence of an inaccuracy in estimating
pumping volume is an inaccuracy in spatial distribution of discharge and recharge. The
region in which this practice occurs is distant from the Snake River so these potential

inaccuracies have a low impact to predictions near the river.
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An initial pumping estimate of 4 AF/ac/yr comes from experience of the North
Water Measurement District for water years 1997 through 1999. This appears reasonable
considering ET, precipitation rates and irrigation and conveyance efficiency.

The lands in ITESW044 are aggregated from three irrigation companies; Jefferson
Irrigation, Monteview, and Producers Canal Companies. Three of the otfsite points are
associated with the Jefferson lands, three with the Monteview lands, and two with the
Producers lands. Figure 43 shows the location of the off-site wells. Based on the original
GIS shapefiles (see ESPAM Design Document DDW-008), the 2000 irrigated lands map
was clipped to show irrigated lands in each of the three companies. The acreage of these
lands was multiplied by four feet to determine a gross pumpage volume for each
company, then divided by the number of represented off-site wells to obtain an annual
volume per well. The annual volume was distributed among the months according to a
crop-weighted average monthly ET from U.S. Bureau of Reclamation (2003) Agrimet
data for 2000.

To scale pumpage to reflect year-to-year differences in ET, an index was
constructed for each year 1980 through 2000 using revised ET values (Allen, 2002) for
Hamer, Idaho (the nearest weather station with a full record). The ET index is a factor
that relates ET for each given year to the long-term average ET. It is multiplied by the
derived average monthly pumpage to give a monthly pumpage adjusted for the individual
year's climatic regime.

Because the Monteview AGRIMET station did not start operation until 1997, the
Hamer NOAA station was used to calculate the index for years up through 2000. For

each of those years, the index was estimated as the ETr for the specific year divided by
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the average ETr. Because the revised ETr for the Hamer NOAA station did not include a
value for 2001, the 2001 index was derived from Monteview AGRIMET data. The results
are summarized in Table 19. ESPAM Design Document DDW-026 contains more details
regarding the estimation of off-site ground-water pumping. Table 20 lists the represented
pumping in each model stress perioci for the off-site wells.

Perched River Seepage

Perched seepage, or bed loss, represents seepage from a creck or river which is
above the water table. The seepage rate is independent of the nearby aquifer water levels;
that is, the reach is not hydraulically connected to the aquifer. All perched scepage is
entered into the model as a line source. The estimated seepage is distributed among the
model cells associated with each perched reach. This information is prepared as input to
the Fortran component of the recharge tool, which applies the perched seepage in the
estimation of net recharge.

Perched river seepage for rivers and creeks other than the Snake River was
estimated from a water balance using gage and diversion data. The same data were often
used for both diversion (see section on surface water diversions) and seepage
calculations. Figure 23 shows the primary perched reaches. Some of the less significant
represented perched reaches (for example, the Birch Creek hydropower discharge) were
repre.sented in th;e model but are not shown on Figure 23. Table 6 contains a complete
listing of the represented perched reaches. Table A-2 lists the model cells associated with

each of the perched reaches.
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Data were not always available for every gage for every year. The foilowing
section summarizes how the seepage from each perched reach was estimated. For a
complete description, the reader is referred to ESPAM Design Document DDW-024.

Camas Creek and Lone Tree. Flood-control diversion volumes (USGS, 2002)

were app‘lied as a line source at the Lone Tree spreading location. Camas Creek perched-
river seepage (bed loss) was based on the difference in flow between two gaging stations
at Camas Creek. The upper gaging station is Camas Creek at Red Road near Kilgore and
the lower is Camas Creek near Camas. Corrections were made for diversions at Lone
Tree and irrigation diversions between the two gages (Shenton, 2002).

The Red Road gage data series (the north end of the losing reach) was incomplete.
Thus, the final perched seepage values used in model calibration were based on gage data
for all periods where data were available and estimated seepage where Red Road gage
data were not available.

Medicine Lodge Creek. Medicine Lodge Creek lies partially inside and partially
outside the model study area. GIS analysis shows that 45% of District 32-¢ irrigated
lands are within the study arca. Medicine Lodge Creek sinks into the Snake River Plain
south of the irrigated lands. Bed loss was calculated by subtracting the inside-study-area
diversions from the gaged flow of Medicine Lodge near Small, Idaho. The gaging station
for Medicine Lodge began to function during the summer of 1985; records were not kept
prior to that date. For years after 1985, the “Big Lost River Below Mackay Reservoir”
gaging station was compared with Medicine Lodge creek gage records using linear
regression. This produced a reasonable relationship, which was applied to the years

before 1985. For all years before 1985, the predicted Medicine Lodge gage record was
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used with actual diversions in calculating bed loss. Actual data were used to calculate
bed loss for all years after 1985.

Birch Creek and Birch Creck Hydropower Plant. The bed loss and diversion

calculations for Birch Creek are divided into two different time periods. Before 1987,
water was delivered to Reno Ranch through a ditch with an estimated 50% bed loss.
After 1987, water was diverted into a lined canal and pipeline and delivered to the Birch
Creek hydroelectric plant before being used by the Reno Ranch (Sorenson Engineering,
2002).

Prior to 1987, Birch Creek was measured at the USGS gage station “Birch Creek
at Eight-mile Canyon Road Near Reno Idaho.” Water measured by this gage station was
then diverted into the old Reno Ranch ditch during summer months. Excess water (and
all water during winter months) was allowed to continue downstream and flow out onto
the desert.

For months when the Eight-mile gage station was not active, gage records were
predicted using regression based on Birch Creck diversions. Prior to 1987, half of the
reported diversions were applied as diversions to irrigation entity [IESW037. The Eight-
mile gage record, minus diversions applied to [ESW037, was applied as perched river
seepage (bed loss) in the natural channel of Birch Creek within the study area. This
actually applied the 50% ditch loss from the old ditch to the natural channel of Birch
Creek, but since the old ditch is outside the model study area, seepage from the ditch
actually enters the model domain as sub-surface flow in the model cells near the creek

channel.
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During the summer of 1987, the Birch Creek hydroelectric plant began to operate
and the Eight-mile gage was discontinued. The entire flow of Birch Creek is delivered to
the plant through a lined canal and pipe system. Outflow from the plant is applied to
irrigation of the Reno Ranch or delivered to a channel where it infiltrates into the
subsurface. Discharge records were obtained from the Birch Creek hydroelectric plant
for use in calculating bed loss (Sorenson Engineering, 2002), in combination with

watermaster diversion records.

Camas National Wildlife Refuge and Mud Lake. For the wildlife refuge, surface-
water delivery volumes are recorded by the watermaster. These volumes are applied to a
GIS line feature along the axis of the wetland.

Camas Creek inflows to Mud Lake. In some years, particularly during the winter,

Camas Creek supplies water to Mud Lake. In the perched river seepage data sct, Camas
Creek inflows are applied as perched river seepage (recharge to the aquifer) to a GIS line
feature that occupies the same model cells as the lake. Summertime values are obtained
from watermaster records (Shenton, 2002). Wintertime inflows are not recorded directly,
but are computed from a mass-balance calculation of October and May lake contents,
winter-time pumping to the lake, and estimates of winter-time ET and precipitation, using
watermaster-supplied data.

Mud Lake Flood Control. Tn high water years, water is pumped from Mud Lake

to the desert south of the farm lands as a flood control measure. Data are obtained from
watermaster records. No irrigation diversions are associated with this perched river

seepage site.
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Little Lost River and Little Lost River Flood Control. Because the Little Lost

River infiltrates to the aquifer a short distance beyond the irrigated lands, perched river
seepage is calculated as the difference between flow at the Little Lost River gage (very
near the model boundary) and diversion volume.

When annual diversion volumes were interpolated to monthly values based on
percentages from 2001 daily records, many negative bed loss values were generated. To
correct this condition, annual diversion volumes were distributed temporally according to
summer gaging station temporal patterns. This gave a more reasonable distribution
without causing negative bed loss values.

The gaging station at “Little Lost near Howe” was decommissioned in 1991. A
number of prediction options were explored to estimate gaging records for the last years
of the model calibration period. A linear regression based on precipitation at the Howe
gage was the selected method.

Using the predicted yearly gage station record for years after 1991, yearly
diversions were subtracted to give a total bed loss for each year. Annual values were
interpolated to monthly results using percentages from the pre-1991 data. To smooth the
time series, months were grouped together and averaged. The groups were April-Oct,
Nov-Feb, and March.

In 1985, a flood-control spreading area was developed up-river of Little Lost
River diversions. During winter months water is diverted to the spreading area to prevent
icing and local flooding. Another line source was developed to show this location as a

point of recharge during winter months. Prior to 19835, wintertime bed loss is applied to
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the channel of the Little Lost River below the gage. For 1985 and later years, it is applied
to the spreading area. Summertime bed loss is always applied to the river channel.

Big Lost River. The entire irrigated area of the Big Lost Valley that is included
within the model area is bounded between two gages on the Big Lost River. The river
flows through irrigated lands throughout this area, and there is a fairly dense network of
diversion canals and laterals throughout the irrigated area. The gage data were complete
for the entire calibration period. Therefore, the recharge assocjated with surface water
irrigation, canal leakage and perched river seepage was all lumped into the surface-water
irrigation calculation. For summer months, the entire difference between the upstream
gage (Mackay Dam) and the downstream gage (Near Arco) was applied as a diversion to
irrigation entity [IESW005. In the winter months, the entire difference was applied as bed
loss (perched river seepage) to the line feature representing the riverbed, illustrated in
Figure 23. This resulted in some wintertime negative values, which could be consistent
with the processes of periodically gaining reaches and of lagged return flows. These are
both physical possibilities, so the negative values were retained in the data. Three gages
below Arco and records of diversions to a flood-control spreading ground at the Idaho
National Laboratory were used to spatially distribute any water discharging past the Near

Arco gage to the spreading ground and lower reaches of the river.

Big Wood River and Little Wood River. Most of the Big Wood River was

represented with no perched seepage because the bed loss calculated from gage data
oscillated about zero, with a very small magnitude relative to stream discharge.
Upstream and downstream gage data (adjusting for diversions and returns) were used to

calculate bed loss in the Little Wood River, the lower reach of the Big Wood River, and
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the reach of the Big Wood River identified in Table 6 as the “Below Magic Reservoir”
reach, just below the reservoir.

"Twin Falls Canal and Lake Murtaugh. Because nearly all of the Twin Falls Canal

Company lands lie outside the study area, the diversions applied to irrigation entity
IESW041 were\disoounted substantially. However, the leaky portion of the canal within
the study area and a part of Lake Murtaugh within the study area contribute recharge to
the aquifer based on total diversions. Because of the large volume of recharge relative to
the small fraction of diversions applied to the model, these leaky features were not treated
with the leaky canal function of the GIS/Fortran Recharge Tool. Instead, recharge for
these locations was calculated in a spreadsheet using the full diversion volume, and
applied in recharge calculations as perched river seepage to the location illustrated in
Figure 23. Leakage calculations relied upon data from Twin Falls Canal Company (circa
1955).

Table 6 lists the average perched seepage for each reach. Both average stress
petiod seepage and average annual seepage are listed in Table 6.
Steady-State Model Water Budget

During compilation of water level data, it became apparent that there was an 18.5-
year period (May 1, 1982 to October 31, 2000) during the 22-year model calibration
period where aquifer water levels across the eastern Snake River Plain started and ended
at approximately the same levels. This suggests that during that period, there was no net
change in aquifer storage or, stated otherwise, that on the average during that period the
inflows were equal to the outflows. This period was selected as the steady state period

for the ESPAM. To generate the recharge for the steady state model, each component of
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recharge was averaged for that period. Figure 44 shows a bar graph of the elements of
the steady state recharge. River gains in Figure 44 represent the net of Snake River and
Henrys Fork gains and losses above Minidoka and spring discharges in the Milner to
King Hill reach. Figure 45 shows a map of the areal distribution of steady state recharge.
Transient Model Water Budget

All of the components of recharge described above were estimated for each of the
44 transient model stress periods and were processed through the GIS/Fortran Recharge
Tool. The output of the Fortran component of the recharge tool is the MODFLOW-
formatted well file or recharge array which contains the net recharge or discharge for
every model cell for every stress period. Figure 46 shows a graph of the annual net
recharge for the 22-year period, graphed along with precipitation for the same period.
There are several striking features to note in Figure 46. The amount of net aquifer
recharge is highly correlated to the amount of precipitation. Precipitation contributes to
net aquifer recharge in three ways: precipitation is the basis for the water supply for
surface water irrigation, high summer precipitation reduces the requirement for ground-
water pumping and precipitation contributes directly to aquifer recharge via recharge on
non-irrigated lands. Additionally, in a high precipitation year, carryover water will be
left in the reservoirs for use in the following season, helping to sustain the supply of
water available for aquifer recharge in the following year. Another striking feature from
Figure 46 is that there is a 4.7 million acre-foot variation in estimated annual recharge to
the aquifer, ranging from a high in 1984 of approximately 7.5 million AF to a low in
1989 of approximately 2.8 million AF. These dramatic variations in net aquifer recharge

will cause dramatic variations in aquifer water levels.
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Figures 47 and 48 show the spatial distribution of transient recharge for the
irrigation season and the non-irrigation season, respectively, for 1980-1981. Comparison
of Figures 47 and 48 shows that irrigated agriculture plays a significant role in net aquifer

recharge.

Model Calibration

The ESPAM was calibrated using automated parameter estimation tools. The
goal of model calibration was to adjust model parameters (transmissivity, aquifer storage,
riverbed conductance and drain conductance and elevation) until model-predicted values
of aquifer water levels and discharges to the river matched observed values. The
calibration was done in two steps. An initial steady state calibration was done to
establish initial aquifer transmissivity and riverbed and drain conductance. After the
initial steady state calibration, a coupled steady state and transient calibration was done.l
During the coupled steady state and transient calibration, the parameter estimation
sofiware would adjust aquifer storage and drain elevation during the transient portion,
followed by a check of the steady state model fit. This forced the transient calibration to
not only provide a ‘best fit” to the transient data but to also honor the steady state
observations. Changes to the transmissivity field and riverbed and drain conductance
were allowed during the coupled steady state/transient calibration.

The following sections describe the parameter estimation tools used for ESPAM
calibration, the collection of aquifer observation data used during model calibration and
the initial steady state and final coupled steady state/transient calibrations. Final model
parameters and a comparison between model-predicted values and observed values are

presented in the section describing the coupled steady state/transient calibration,
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Parameter Estimation Tools
PEST, a nonlinear, least-squares inverse modeling program developed by Doherty

(2004) was used to calibrate the model. (PEST is available for download on the web at
www.sspa.com/pest.) During calibration, PEST runs the MODFLOW model thousands
of times, comparing model-predicted results with observations. After each model run,
the objective function is analyzed to determine whether the model run was an
improvement over the previous run. After each model run, PEST evaluates each adjusted
parameter to determine the next best adjustment to that parameter. PEST then prepares
the input data set for the next model run with the adjusted parameters, runs the model and
re-evaluates the output. The goal is a weighted, least-squares oﬁtimization of the fit
between the model-predicted values and the observations.

A key to success at using parameter estimation tools is to have a greater number
of observations than parameters being estimated. With previous parameter estimation
packages (including previous versions of PEST), this was accomplished by establishing
zones of transmissivity and aquifer storage. The parameter estimation software would be
tasked to calibrate a single parameter value for each zone, thus greatly reducing the
number of parameters being estimated for the entire model. The delineation of the zones
was subjective and the calibrated model had abrupt changes in parameter values at zone
boundaries.

PEST allows an option of using “pilot points” where parameter values are
estimated at user-specified points. PEST interpolates model parameter values between
the pilot points using kriging or some other spatial interpolation scheme. For example,
during ESPAM calibration using PEST, transmissivity was estimated at 169 pilot points.

The transmissivity at these 169 points was interpolated to the entire grid of 11,000 active
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model cells. Similarly, aquifer storage, which has a much lower degree of variation than
transmissivity, was estimated at 28 pilot points and interpolated to thé whole grid.
Doherty (2003) provides a more rigorous description of pilot points and how the process
works. Additionally, PEST was instructed to calibrate riverbed conductance at the five
reaches of the upper Snake River and drain conductance and elevation at the six spring
reaches in the lower Snake River, At each calibraiion run, PEST minimized the
difference between observed and model-predicted aquifer water levels and river gains.
River Gain/Loss Calibration Targets

For the upper Snake River, the river gain/loss calibration targets were estimated
using the IDWR Reach Gain/Loss Program. The Reach Gain/Loss Program uses gaged
reach inflows and outflows, measured diversions and estimated irrigation returns and
reservoir storage and evaporation to calculate a water balance for the reach. The residual
of the water balance is the estimated river reach gain from or loss to the aquifer. More
information on the IDWR Reach Gain/Loss Program can be obtained directly from
IDWR. Inputs to the Reach Gain/Loss Program include measured diversions, gaged river
flows, reservoir stage and irrigation return ﬂdw lag factors (described above). For the
purposes of the ESPAM modeling, the newly calculated return flow lag factors were
entered into the Reach Gain/Loss Program input files.

Figures 49 through 53 show the estimated monthly reach gain for the five reaches
of the upper Snake River (Ashton to Rexburg, Heise to Shelley, Shelley to Near
Blackfoot, Near Blackfoot to Neeley and Neeley to Minidoka). As can be seen in Figures

49-53, there is a lot of noise in the monthly data. Prior to use as calibration targets, the
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monthly reach gains/losses were filtered to eliminate some of the noise (see transient
calibration section).

The streamflow gages on the Snake River are maintained by the USGS and are
assigned a rating of “excellent,” “good” or “fair,” with associated uncertainty bands of +
5%, = 10% and = 15%, respectively. Each of the upstream gages for the five teaches of
interest is rated “good.” Given the “good” rating, the uncertainty on the inflows for each
reach is approximately = 10%. In general, assuming that there is no systematic error
introduced at a gage, the &= 10% uncertainty is for an instantaneous measurement.
Assuming no systematic error, the uncertainty in the river discharge should be reduced as
single day measurements are aggregated into weekly or monthly measurements.

The uncertainty in the estimated river gain or loss is driven by a) uncertainty in
both the upstream and downstream gages, b) uncertainty in measured diversions, ¢}
uncertainty in estimated irrigation return flows and d) uncertainty in reservoir storage and
evaporative losses. The estimated reach gain or loss cannot be more accurate than the
least accurate component. In order to provide a sense of the magnitude of the estimated
river gain or loss relative to gage uncertainty, Figures 49 through 53 also show an
uncertainty band of £ 5% of the upstream gage. This is not a statement of the true
uncertainty of the estimated reach gain or loss but is provided as a guideline for the
magnitude of the gain or loss relative to a conservative uncertainty band on the gaged
inflow,

If the estimated reach gain or loss is approximately the same magnitude as the +
5% band, then there is low confidence that the reach is gaining or losing. Figure 53

shows that the magnitude of the Neeley to Minidoka estimated reach gain is almost
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always within this 4 5% band; hence, there is significant uncertainty that this reach is
gaining or losing. In contrast, Figure 52 shows that the magnitude of the Near Blackfoot
to Neeley estimated reach gain is significantly greater than the + 5% band; hence there is
more confidence that this reach is gaining. The estimation of river gain and loss
calibration targets is further discussed in ESPAM Design Document DDM-017.

Spring Discharge Calibration Targets

Spring discharge calibration targets proved to be something of a challenge for the
ESPAM project. Very few of the springs in the Thousand Springs region are measured
with any regularity or accuracy. For many of the springs in the region, it is difficult to
discern the discharge point of the spring. Many of the springs have complex plumbing
which routes the collected water to various users, making measurement difficult.

The USGS estimates the total annual spring discharge from the regional eastern
Snake River Plain aquifer (excluding spring discharge from the Twin Falls area on the
south side of the river) based on a regression equation developed by Kjelstrom (1995b).
The regression equation uses measured flow at several index springs. However, the
Kjelstrom method addresses neither seasonal nor spatial variation in spring discharge.
Table 21 lists the annual estimated reach gain from the north side in the Milner to King
Hill reach for the calibration period.

In order to compensate for this lack of data, the ESPAM modeling team and the
ESHM Committee agreed to try to spatially distribute the total reach gains as predicted
by the Kjelstrom method according the magnitude of the springs recorded by Covington
and Weaver (1990). For each of the spring sub-reaches shown in Figure 21, the relative

magnitude of spring discharge in the sub-reach to spring discharge in the whole reach
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was estimated. These estimates were based on the Covington and Weaver (1990)
estimates. Table 22 lists the relative magnitude of the six spring sub-reaches from Milner
to King Hill and the percent of the total reach gain that each represents. Temporal
discretization was done using the seasonal variation in measured springs such as Blue
Lakes, Crystal and Box Canyon, which were deemed representative of the springs in the
whole reach. This was the method initially used to generate spring calibration targets in
the Thousand Springs reach. This method was successful for generating average spring
reach calibration targets for steady state calibration. During transient model calibration,
however, it became apparent that springs varied markedly in their temporal discharge
patterns. Thus the initial method of generating spring targets was unsuccessful for use in
the transient calibration.

The second approach, which ultimately was successful for transient calibration,
was to use actual spring measurements for the springs for which measurements exist.
Initially, the springs for which long-term measurements existed were: Devils Washbowl,
Devils Corral, Blue Lakes, Crystal Springs, Clear Lakes, Briggs Springs and Box Canyon
Springs. The two springs with the greatest magnitude of discharge, Thousand Springs
Power Plant and Malad Gorge Power Plant, did not have discharge measurement records.

At the request of the modeling team, Idaho Power used power generation records
at the two plants to estimate spring discharge for Malad and Thousand Springs. Although
not obtained through direct measurement, these turned out to be reasonable proxies for
measurements of the springs at Malad and Thousand Springs. Once those hydrographs
were obtained, transient model calibration was successful. Figure 54 shows the location

of the individual springs used as calibration targets. Hydrographs of the measured (and
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estimated) springs will be presented in figures in the discussion of transient model
calibration. Table 23 lists the model cells representing the springs used as transient
calibration targets. Table 24 lists the number of observations and the date range of the
observations for each of the calibration target springs. In addition to using monthly
spring measurements, the mean discharge and standard deviation of each spring were also
used as calibration targets. The annual Kjelstrom estimate of total spring discharge for
the entire Milner to King Hill reach as well as the estimated sub-reaches were used to
help evaluate the modet fit. The estimation of spring discharge calibration targets. is
further discussed in ESPAM Design Documents DDM-018 and DDM-008.

Aquifer Water Level Calibration Targets

Aquifer water level calibration targets were obtained from the IDWR data base of
Idaho aquifer water level measurements using the program WellLog. The WellLog data
base includes measurements from the USGS, IDWR, Idaho Power and private consulting
firms contracted by the agencies to conduct water level measurements. More information
about WellLog can be obtained in the WellLog user’s manual (IDWR, 1997¢).

Several synoptic measurements (mass measurements} of aquifer water levels were
done in 1980-1981 as part of the USGS Regional Aquifer-Systems Analysis effort on the
castern Snake River Plain. This entails measuring as many wells as possible throughout
the study area in a short period of time in order to estimate a regional potentiometric
surface. As part of the current study, three additional synoptic measurements were done;
in Spring, 2001, Fall, 2001 and Spring, 2002. This provided mass measurements at the

beginning and ending of the model calibration period.
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WellLog was queried for all depth to water measurements within the study area
within the calibration period. Depth to water measurements which were documented to
be in aquifers other than the regional aquifer, such as locally perched zones, were
excluded. Similarly, depth to water measurements which appeared flawed (perhaps an
error in recording or a measurement taken shortly after a well was pumped) were
discarded. If neighboring water level measurements corroborated a seemingly spurious
measurement, the measurement was retained.

Wellhead elevations were estimated using USGS 10 meter digital elevation maps
(DEMs) intersected with the IDTM position of each well. This was done using GIS
software. An analysis of the accuracy of this technique was done by comparing the
elevation determined using 10 meter DEMs versus surveyed elevations where they
existed. It was found that, on the average, the elevation determined from the DEMs was
within 1.21 ft of the surveyed elevation. This was considered acceptable accuracy by the
ESHM Committee. More detail on the use of DEMs for estimating welihead elevation
can be found in ESPAM Design Document DDM-011.

Using the estimated wellhead elevations and the measured depth to water, water
table elevations were calculated for each measurement. Figure 10 illustrates water table
contours from the Fall 2001 mass measurement. More detail on the collection of aquifer

water level data can be found in ESPAM Design Document DDW-014.

Initial Steady State Calibration

Steady-State Calibration Data
Although true steady state conditions rarely exist in natural aquifers, most ground

water modeling efforts include a steady state analysis because the transmissivity
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distribution tends to be more sensitive to steady state water levels than transient water
levels. As previously stated, the net change in aquifer storage, as indicated by water
levels between May 1, 1982 and October 31, 2000 was small, so the period was selected
as the steady state period. At steady state, the recharge and discharge for an aquifer
system are balanced and no water is entering or leaving aquifer storage.

Steady state calibration water level targets were generated by averaging water
level measurements for this period. Wells with only one observation during this time
period were not used as targets. A total of 1009 steady state aquifer water level
observations were used. Figure 55 shows the locations of the wells used as observations
for steady state calibration. Figure 55 also shows the location of the river and spring
reaches. The reader will note in Figure 55 that many of the wells used for steady state
calibration targets are located reasonably close to the river and spring reaches. This helps
to control the certainty of the calibrated parameters in these areas of high interest. In
areas with few observation wells, the calibration parameters are less certain.

Steady state river gain targets were estimated by averaging the transient river
gains for each of the five sub-reaches for the steady state period. Similarly, steady state
spring calibration targets were estimated by averaging the transient spring reach targets
for the steady state period. Table 25 lists the steady state river and spring calibration
targets.

Steady-State Calibration Procedure

During steady state calibration, the model parameters of aquifer transmissivity

and riverbed and drain conductance were estimated. The steady state calibration was

accomplished using 1020 observations and 180 adjustable parameters. The observations
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include 1009 aquifer water level observations, five river reach gain/loss observations, and
six spring reach observations. The adjustable parameters include 169 pilot points used to
adjust the transmissivity distribution, five river parameters to adjust riverbed conductance
for the five river reaches, and six drain parameters to adjust drain conductance for the six
spring reaches. Figure 56 shows the location of the pilot points used for calibration of
aquifer transmissivity.

The steady state calibration was accomplished by minimizing the difference
between model-predicted steady state aquifer water levels and Snake River gains and
losses and the averaged observed water levels and averaged estimated Snake River gains
and losses and spring discharges. The steady state calibration was done using PEST
parameter estimation tools. During the steady state calibration, model-predicted aquifer
water levels, which are generated for the center of each model cell, were interpolated to
the actual location of each observation well prior to comparison,

The same steady state calibration targets and calibration procedure were used
during the initial steady state calibration and during the coupled steady state/transient
calibration. The product of the initial steady state calibration is an intermediate product.
The ending steady state heads and aquifer transmissivity and riverbed conductance
became the starting values for the coupled steady state/transient calibration. The coupled
steady state/transient calibration yielded both calibrated steady state and transient

versions of the ESPAM.
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Coupled Steady State/Transient Calibration

Transient Calibration Data
The transient calibration data include aquifer water level observations, monthly

Snake River gains and losses, and spring discharge observations. Transient calibrations
are undertaken primarily to determine specific yield. Changes in aquifer water level are a
function of aquifer storage or specific yield; hence transient model water level targets are
changes in water levels, not the absolute measured water levels. Modeled aquifer water
levels were also converted to changes in water levels for comparison with the targets.
For the ESPAM calibration, three different types of transient aquifer water level data
were used as calibration targets: 1) seasonal wells - wells with long time series
consisting of frequent observations (9548 total observations in 39 wells over a maximum
of 17 years), 2) mass measurement wells - water level observations collected between
spring 2001 and spring 2002 as part of this project (1766 total observations in 601 wells),
and 3) trend wells - wells with regular spring-time observations (1403 observations in
173 wells). Figure 57 shows the locations of the transient aquifer water level observation
wells.

As during the steady state calibration, model-predicted aquifer water levels are
interpolated from the center of the model cell to the actual location of the observation
wells. For the transient part of the calibration, a similar interpolation was also done in
time. The model-predicted water levels are generated at every model time step (in the
case of the ESPAM calibration, every 18.2 or 18.3 days). During calibration, the PEST
software interpolated model-predicted water levels to times which match the actual dates

of aquifer water level observations.
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The monthly gains and losses for the five river reaches above Milner Dam which
were computed using the IDWR Reach Gain/Loss Program proved to contain significant
measurement noise, so the data were filtered in a computer program called TSPROC
(Doherty and Johnston, 2003) prior to their use as calibration targets. TSPROC uses a I-
stage, low passButterworth filter to remove excessive noise in time series data sets. For
the ESPAM application, the cutoff frequency was 5.48e-4. Model-predicted river gains
were filtered using TSPROC and matched with the filtered observations.

Measured discharge data from Devils Washbowl, Devils Coral, Blue Lakes,
Crystal Springs, Clear Lakes, Briggs Springs and Box Canyon Springs were used as
calibration targets, as were the spring discharge estimates for Thousand Springs and
Malad which were estimated from power records. In general, these spring discharge data
were not as noisy as the river gain and loss estimates from upstream reaches and
therefore were not filtered. Model-predicted spring discharge at the model cells noted in
Table 23 were interpolated in time and then compared with the measured spring
discharges. Despite the fact that these individual springs were explicitly modeled, the
ESPAM is a regional model and is not intended for predictions of impacts to individual
springs. A regional model is limited to replicating broad-scale heterogeneity in the
physical system and cannot replicate localized heterogeneities.

Coupled Steady State/Transient Calibration Procedure

The coupled steady state/transient calibration was done using PEST parameter
estimation software. During the transient part of the calibration, aquifer specific yield
was calibrated at 28 pilot points (see Figure 36), spring (drain) elevation was estimated at

the model cells representing the springs used as calibration targets and spring (drain)
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conductance was estimated at the six spring reaches and the nine drains used as
calibration targets. The steady state portion of the calibration was as described above.
The ending heads from steady state were used as starting heads for the transient
calibration. During the coupled steady state/transient component of each calibration
model run, PEST was allowed to modify aquifer transmissivity and river and drain
conductance as well as establish aquifer specific yield and spring elevations. After each
pair of steady state and transient model runs, the model-predicted aquifer water levels and
river and spring discharges were compared with the thousands of calibration target
values. The coupling of the steady state and transient models during transient model
calibration forced the calibrated transient model to match both the steady state and
transient calibration targets, ensuring that there was minimal degradation in the match to
the steady state data caused by the transient calibration.

The objective of the transient part of the model calibration was to minimize the
difference between observed river gains and losses, spring discharges and water level
changes between May 1, 1985 and April 30, 2002. The transient model required a warm-
up period of about five years because observations during the initial 1980-1985 period
are partly dependent on events that occurred years prior to 1980. By using the ending
steady state heads as the transient starting heads, the impacts of recharge and discharge in
the years prior to 1980 were approximated. When the model was allowed to run with
estimated recharge and discharge data from 1980 to 1984, by 1985 the model was
responding appropriately based on comparison with measured values (river gains and

losses and aquifer water levels).
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The coupled steady state/transient calibration utilizes about 16,600 observations
and 225 adjustable parameters. The observations include 12,700 aquifer water level
change observations, 1300 Snake River gain/loss observations, 1300 spring discharge
observations and the previously mentioned steady state observations. The adjustable
parameters include 169 pilot points to adjust the transmissivity distribution, 28 pilot
points to adjust the specific yield distribution, 5 river parameters to adjust riverbed
conductance for the five river reaches, and 9 drain conductance parameters and 9 drain
elevation parameters at model cells with spring records.

When data entry errors in the calibration targets were discovered in ESPAM
Version 1.0, the coupled steady state/transient calibration was re-run using the corrected
reach aggregations and upper Snake River calibration targets. Keeping all initial
estimates of calibration parameters and the overall calibration methodology the same as
were used for Version 1.0, making only the changes required for correcting the data entry
errors in the previous calibration, the PEST calibration was re-run to generate ESPAM
Version 1.1. The statistics and parameters discussed below are for ESPAM Version 1.1.
These data entry errors, however, did not significantly affect results of the model
simulation.

Steady State Calibration Model Fit

Model residuals (the difference between model-predicted and observed values)
are generated by the PEST sofiware, providing an indication of how well the model-
predicted values match the observed values. Model statistics for the steady state
calibration indicate an overall R? between measured and modeled aquifer water level

observations of 0.9943. The standard etror for the aquifer water level estimates is 17.84
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fi indicating that about 95 percent of the modeled aquifer water levels are within about
35.6 ft of observed values, which represents less than 2% of the head change in the
aquifer between St. Anthony and King Hill, Idaho. Figure 58 shows a scatter plot of
model-predicted versus observed aquifer water levels. Figure 58 shows an excellent
match between the predicted and observed aquifer water levels. A regression line for the
data indicates a slope of .9936 and an intercept of 28.618. With a perfect match, each
point in Figure 58 would fall on a line with a slope of 1 and an intercept of 0. Relative to
the range of values on either axis, 28.618 is very nearly zero, Figure 59 shows a map
with water level contours for both the model-predicted and observed aquifer
potentiometric surface. Figure 59 also shows an excellent fit between the model and the
steady state observations.

Steady state model-predicted versus observed discharge to river and springs is
shown in a scatter plot in Figure 60. Figure 60 shows an excellent fit between model-
predicted and observed discharges to the river, with an R? value of .9878. The regression
line which fits the data in Figure 60 has a slope of 1.0107 and a y-intercept of 679,326.

Table 25 lists the model-predicted and observed steady state river and spring discharges.

Transient Calibration Model Fit

Comparison of Simulated and Observed Transient Heads
One of the measures of a transient calibration is how well the model simulates

measured aquifer water levels over time. Figures 61 through 65 show transient model-
predicted versus observed water levels. On Figures 61 through 65, the transient
comparisons are sited on maps of the study arca with pointers to the location of each

hydrograph. In each of these figures, the pink line represents the model-predicted values.
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Wells with multiple measurements each year for a long period were selected to
calibrate the ESPAM’s model ability to replicate the seasonal changes in aquifer water
level. Figures 61 and 62 show eight selected wells with seasonal fits. The ability of the
model to replicate seasonal aquifer water level changes is a function of aquifer storage
and transmissivity as well as the model recharge and discharge. Figures 61 and 62 show
thai the ESPAM does a very good job of matching seasonal aquifer water level data. The
standard error for the seasonal aquifer water level ovservations is 1.84 ft.

Wells with a spring observation for each of many years were selected to test the
ESPAM’s ability to replicate the long-term trend of aquifer water levels for the
calibration period. Figures 63 and 64 show model-predicted versus observed aquifer
water level trend data. Similar to the seasonal data, a model’s ability to match trend data
is a function of aquifer storage, transmissivity and model recharge and discharge.
Figures 63 and 64 show that the fit to trend data was very good. The standard error for
the trend data is 5.83 ft.

Figure 65 shows the model’s fit to the mass measurement data which was
collected for three periods at the end of the calibration period. Figure 65 also shows a
reasonable fit to the mass measurement data. The standard error for the mass |
measurement data is 5.17 fi.

Comparison of Simulated and Observed River Reach Gains

Figures 66 through 70 show the filtered modeled gains in the upper Snake River
versus the filtered observed gains. Figures 71 through 75 show the same data, without
the filtering. Figures 66 through 70 and 71 through 75 represent reach gains in the

Ashton to Rexburg, Heise to Shelley, Shelley to Near Blackfoot, Near Blackfoot to

A&B 3137



106

Neeley and Neeley to Minidoka reaches, respectively. The pink line in Figures 66
through 70 represents the model-predicted values. The observation data shown in
Figures 66 through 70 is the filtered data shown in Figures 49 through 53, as previously
discussed. In each river reach, no attempt was made to match the first five years of data
due to the transient model warm-up period. As can be seen in Figures 66 through 70, the
model does a reasonable job of predicting reach gains in each reach of the upper Snake
River. For the Neeley to Minidoka reach, the measured data shows that the reach gain is
somewhat erratic, year to vear, but is a slight gain on the average. The model predicts an
almost constant modest gain for Neeley to Minidoka. Inspection of Figure 53, the raw
monthly reach gain observation data versus gage uncertainty for the Neeley to Minidoka
reach, shows that this reach effectively, on the average, has a slight gain. Hence, the
model-predicted value was considered reasonable.

Figures 71 through 75, the comparison of unfiltered model-predicted versus
measured river gains, show the seasonal variation of both the measured and predicted
river gains. The model generally under-predicts the month to month variation of the
measured data; however, inspeciion of the unfiltered measured reach gains shows a
significant amount of noise in the data, reflecting uncertainty in instantaneous river gage
measurements.

Comparison of Simulated and Observed Spring Discharges

Figures 76 through 84 show the model-predicted versus observed spring
discharges for the following springs: Devils Washbowl, Devils Corral, Blue Lakes,
Crystal, Clear Lakes, Briggs, Box Canyon, Thousand Springs and Malad. As with

previous transient hydrographs, the pink line represents the model-predicted values in
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Figures 76 through 84. As can be seen in Figures 76 through 84, the model does an
excellent job of predicting the magnitude of the spring discharge for each spring. The
model underestimates the seasonal amplitude of spring discharge for Crystal, Briggs, Box
Canyon, Thousand Springs and Malad. The measured seasonal amplitude for these
springs is approximately 20% and the model-predicted seasonal amplitude is

approximately 9%.

Calibrated Model Parameters

Aquifer Transmissivity
Simulation results indicate a wide range in transmissivity from about 125 to 4.9 x

107 f¥/day (Figure 85). Riverbed and drain conductance ranges from 10.3 to 1.57x 10
ft/day/ft. Final values for riverbed and drain conductance can be found in Tables 3 and 4,
respectively. Figure 86 shows the ratio of the final ESPAM transmissivity to the
preliminary steady state transmissivity., As can be seen in Figure 86, the preliminary
steady state transmissivities were scaled by as much as an order of magnitude during the
coupled steady state/transient calibration. This represents the amount of change required
in the initial steady state transmissivity field in order to accommodate the transient data.
The map of the calibrated model transmissivity (Figure 85) shows that estimated
transmissivity values tend to be lower along the margins of the plain and higher towards
the center. Two major exceptions to this generalization include the Mud Lake barrier and
the Great Rift. The Mud Lake barrier extends east to west across the aquifer from the
Bitterroot Mountains to just south of the confluence of the Henrys Fork and the South
Fork of the Snake River. The Great Rift extends north to south across the plain from the

Big Lost River Valley to just west of American Falls Reservoir. The transmissivity of
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both of these features is lower and impedes ground water flow as evidenced by the more
tightly spaced equipotential lines in these areas. These features in the calibrated
transmissivity distribution match our current understanding of the aquifer.

Aquifer Storage

The transient component of a model calibration is primarily used to calibrate
aquifer storage (storativity or specific yield). In the case of the ESPAM, the confined
representation of the physically unconfined system uses aquifer storativity (rather than
the unconfined parameter of specific yield). However, unlike a truly confined system, the
storativity values expected for the ESPAM would be in the range of .001 to .3, a range
much more typical of specific yield. For a truly confined aquifer, storativity values
would be several orders of magnitude smaller.

During the coupled steady state/transient calibration, aquifer storage was
calibrated at 28 pilot points (Figure 56) and interpolated to every model cell. Aquifer
storage has a much lower degree of spatial variation, so fewer pilot points are required for
calibration. The aquifer storage distribution ranges from 3.2 x 10 to 0.280 (Figure 87).
Drain Elevation

After the coupled steady state/transient calibration, drain elevations, which were
modified as part of the calibration, were assessed relative to the ending steady state
heads. It was noted that some of the ending drain elevations were within a few feet of the
ending steady state heads. The ESHMC discussed the fact that the ending drain
elevations were high relative to the ending steady state aquifer levels, with the potential
result that drains would shut off with minor declines in aquifer water level. It was agreed

that the true elevations of the drains are unknown but that an absolute discontinuation of
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major portions of spring discharge due to a minor change in aquifer water level would be
unreasonable.

As previously noted, Equation 7 is the governing equation for aquifer discharge
through a drain. Inspection of Equation 7 shows that discharge is directly proportional to
the conductance of the drain as well as to the elevation differential between the aquifer
level and the drain elevation. The ESHMC discussed the fact that drain elevations could
be changed with a corresponding change in drain conductance to alleviate this concern
without changing the calibration or any major functionality of the model. To achieve this
modification, all drain elevations were checked against the ending aquifer water levels in
the same model cell. Any drain elevation which was within 30 teet of the ending steady
state aquifer water level was adjusted to an elevation 30 feet lower than the ending state
aquifer water level at the drain location. A corresponding adjustment was made to the
drain conductance in that model cell to keep the drain discharge the same. Table 4 lists
the final values for drain conductance and drain elevation for each model cell
representing a drain.

This modification was deemed a reasonable representation of the physical system
of springs. In the ESPAM, all model cells, including drain cells, are 1-mile square. A
model cell representing a drain should not be considered to represent an individual spring
but rather the collective spring discharge along a 1-mile segment of the canyon wall. In
the physical system, springs at high elevations will shut off with significant water level
declines. This will still be represented in the model as a decline in the spring discharge
represented in a model cell, However, it was deemed that the total discharge of a 1-mile

segment was more likely to be reduced than to be eliminated by a realistic change in
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aquifer water level. Clearly, really significant changes (30 ft or more) in aquifer water
levels from the steady state ending heads would result in the wholesale discontinuation of
spring discharge in a model cell.

Model Limitations

As with any model of a natural system, the ESPAM has a degree of limitation and
uncertainty. Simplifying assumptions must be made to model complex, natural systems.
Components of the aquifer water budget which have the least certainty are irrigation
return flows, recharge on non-irrigated lands and tributary underflow. As discussed in
the Water Budget section, these elements were estimated based on the collective
professional judgement of the modeling team and the ESHMC using existing published
material, As previously discussed, there is a shortage of data on spring discharges and
irrigation return flows. The ESPAM calibration would have been enhanced by the
existence of additional measured or estimated spring discharge data and irrigation return
flow measurements.

The ESPAM is a regional ground-water model. For this reason, the model is best
used for broad-scale predictions. As previously noted, the user should avoid the
temptation to model localized impacts, such as impacts to a specific spring.

A primary objective of the model development and calibration was the
characterization of the interaction between the aquifer and the river. Although thousands
of aquifer water level observations were used during the model calibration the model was
optimized for prediction of impacts to the river due to water use on the plain. The model

can be used to provide a general sense of ground-water to ground-water impacts,
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however, the model is best used for prediction of impacts to surface water resources at a
regional scale due to ground-water use.

Despite these noted limitations, the ESPAM is the most thoroughly calibrated
model in existence of the eastern Snake River Plain Aquifer. The extensive use of model
calibration tools and the prevalence of available data yielded an excellent model

calibration.

Related Reports
During ESPAM design and development, a total of thirty-five design documents

were written to document important model and water budget decisions. Each design
document chronicled the design alternatives, the final design and the rationale for
selecting the final design. The design documents were distributed in draft form to the
ESHMOC for review and feedback. Many of the design documents went through multiple
jterations as a result of feedback from ESHMC members either during or after design
reviews. Throughout the ESPAM project, draft and final design documents were made
available to the ESHMC via the IWRRI web site. If, in the course of final model
development or calibration, the documented final design had to be changed, an ‘as-built’
version of the pertinent design document was released to document the change. Table 26

lists the ESPAM design documents and their status as of this writing.

Summary and Conclusions
This report documents the successful reformulation and calibration of the

numerical ground-water model used for water management on the eastern Snake River
Plain. The ESPAM was calibrated to 22 years of recharge and discharge data, as

compared with the previous SRPAM model, which was calibrated to only one year of
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data. Calibration to a long span of years which include some of the driest and wettest
years on record ensures that the model is capable of accurately simulating the response of
the river/aquifer system to a broader spectrum of stresses.

The ESPAM was calibrated using the PEST suite of parameter estimation tools.
Using PEST enabled the modeling team to optimize the fit of the model to thousands of
observed aquifer water levels and streamflow measurements, The final calibrated
ESPAM shows a significantly better fit to observed data than the previous SRPAM
model.

A significant aspect of the ESPAM reformulation and calibration was the
involvement of the ESHMC. The ESHMC, comprised of interested parties representing
agencies, private industry and water user groups, oversaw the ESPAM reformulation and
calibration process. Although the collaborative process used to develop the ESPAM took
more time than the more streamlined, conventional model development process, it
allowed ESHMC members an active voice in model design and implementation decisions
and helped to eliminate bias. By including a broad spectrum of interested parties in the
model reformulation and calibration, the committee members were able to gain a better
understanding of model design details. The ultimate goal of the process was to allow
discussions about future aquifer management decisions to center on policy interpretation
and not on the scientific tools used in support of those decisions.

The outcome of any ground-water modeling effort is enhanced insight into the
hydrologic processes being modeled. This was also true for the ESPAM reformulation

and calibration. Development of the ESPAM underscored several significant gaps in
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either data or our understanding of the underlying hydrologic processes.
Recommendations for further work include:
a) Long-term collection of spring discharge data in the Thousand Springs area
and in the Near Blackfoot to Neeley reach
b) Long-term collection of irrigation return flow data and development of
numerical relationships between the collected data and measured surface
irrigation diversion data
c¢) Continued refinement of estimates of evapotranspiration
d) Improved estimates of river gains and losses, including the use of new
technology such as acoustic Doppler-based stream gaging instruments
¢) Further research on the interaction between the river and the aquiter,
particularly in the Thousand Springs and American Falls areas

f) Improved estimates of the contribution to the aquifer from tributary basins

Although every model represents a simplification of complex processes, with the
ESPAM being no exception, the ESPAM is the best available tool for understanding the
interaction between ground water and surface water on the eastern Snake River Plain.
The science underlying the reformulation and calibration of the ESPAM reflects the best
knowledge of the aquifer system available at this time. The ESPAM was calibrated to
approximately 11,000 observed aquifer water levels and river gain and loss estimates.
Calibration parameters indicate an excellent fit to the observed data, providing
confidence that the ESPAM provides an excellent representation of the complex

hydrologic system of the eastern Snake River Plain.
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Complex water management decisions on the eastern Snake River Plain will be
greatly enhanced by use of the ESPAM. The participation of the ESHMC members in
the model design and calibration process provided members with unprecedented insight
into the details of this complex numerical ground-water model, allowing committee
members to make informed judgements regarding how the model is applied to aquifer

management.
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Table 1. Managed recharge volumes for eastern Snake River Plain.

Year Volume (ac-ft)
1995 180,000

1996 169,000

1997 230,000

1998 201,000

1999 153,000

2000 70,000

2001 and later

none
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Table 2. Start and end date for model siress periods. Irrigation season siress

periods start on May 1 and end on October 31 of the same year. Non-irrigation season stress periods start
on November 1 and end on April 30 of the following year.

Period Start Month End Month  Length (days) Period Start Menth End Month  Length (days’
SP001 May, 1980 Oct, 1980 182 SP023 May, 1891  Oct, 1991 182
SP002 Nov, 1980  April, 1981 183 SP024 Nov, 1991  April, 1992 183
SP003 May, 1981 Oct, 1981 182 SP025 May, 1992 Oct, 1992 182
SP004 Nov, 1981  April, 1982 183 SP026 Nov, 1992  April, 1993 183
SP005 May, 1982 Oct, 1982 182 SP027 May, 1993 Oct, 1993 182
SP006 Nov, 1982  April, 1983 183 SP028 Nov, 1993  April, 1994 183
SPOO7 May,1983  Oct, 1983 182 SP029 May, 1994 Oct, 1994 182
SP0O08 Nov, 1983  April, 1984 183 SP030 Nov, 1994  April, 1995 183
SP009 May, 1984 Oct, 1984 182 SP031 May, 1995 Oct, 1995 182
SP010 Nov, 1984  April, 1985 183 SP032 Nov, 1995  April, 1996 183
SPO11 May, 1985 Oct, 1985 182 SP033 May, 1926 Oct, 1996 182
SP012 Nov, 1985  April, 1986 183 SP034 Nov, 1996  April, 1997 183
SP013 May, 1986 Oct, 1986 182 SP035 May, 1997  Oct, 1997 182
SPQO14 Nov, 1986  April, 1987 183 SP036 Nov, 1997  April, 1998 183
SPO15 May, 1987 Oct, 1987 182 SP037 May, 1998. Oct, 1998 182
SPO16 Nov, 1987  April, 1988 183 SP038 Nov, 1998  April, 1999 183
SPO17 May, 1988 Oct, 1988 182 SP039 May, 1999 Oct, 1999 182
SP018 Nov, 1988  April, 1989 183 SP040 Nov, 1999  April, 2000 183
SP019 May, 1989 Oct, 1989 182 SP041 May, 2000 Oct, 2000 182
SP020 Nov, 1989  April, 1990 183 SP042 Nov, 2000  April, 2001 183
SP021 May, 1980 Oct, 1990 182 SP043 May, 2001  Oct, 2001 182
SP022 Nov, 1990  April, 1991 183 SP044 Nov, 2001  April, 2002 183
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Table 3. List of model cells containing river cells representing the Snake River.

Row

52
52
53
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
55
55
56
56
56
56
56
57
57
57
57
58
58
58
58
58
58
59
59
59
59
60
60

Column

200
201
197
198
199
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
180
181
178
179
168
169
170
166
167
170
177
166
167
171
174
175
176
165
166
171
174
164
172

Stage (ft)

5059.56
5072.45
5018.37
5034.22
5045.92
4826.99
4828.79
4836.26
4840.07
4848.72
4859.43
4866.33
4876.77
4901.92
4914.41
4945.66
4963.37
4980.06
4994.97
5007.84
4818.69
4823.2
4814.93
4816.46
4770.82
4775.57
4779.76
4763.71
4766.42
4784.37
4813.42
4764.36
4764.85
4790.95
4807.07
4809.3
4810.94
4762.48
4764.36
4794.72
4807.5
4759.23
4797.76

Riverbed
Conductance (ft"2/day)
1.01E+06
1.01E+06
1.01E+06
1.01E+086
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
- 1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.01E+06
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05
1.10E+05

River Bottom
Elevation (ft)
5020.45
5034.25
4977.65
4993.48
5005.63
4790.52
4792.48
4800.14
4803.99
4812.76
4823.79
4831.1
4842.16
4867.95
4880.7
4912.51
4928.95
4942.81
4954.97
4967.19
4781.67
4786.41
4777.38
4779.12
4730.46
4735.15
4739.28
4723.57
4726.23
4743.82
4775.62
4724.34
4724.8
4750.3
4766.88
4769.74
4772.55
4722.56
4724 .4
4754.03
4774.5
4719.36
4757.04

Reach

Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Ashton to Rexburg
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
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Table 3 (contd.). List of model cells containing river cells representing the Snake River.

Row

60
60
61
61
82
82
63
83
64
64
65
85
65
66
66
67
67
68
68
68
69
70
70
71
71
72
72
73
73
74
74
74
74
74
75
75
75
76
76
76

76
77

77

Column

173
174
164
175
164
175
164
175
164
176
164
176
177
163
177
163
178
163
178
162
178
161
179
161
180
161
180
160
180
157
158
159
180
181
153
156
181
154
155
181

152

151

162

Stage
{ft)

4802.84
4811.5
4758.28
4830
4755.48
4837.5
4753.39
4844.5
4749.19
4865.5
4744.68
4873.5
4884
4739.41
4896.5
4737.56
4912.5
4735.39
4926.5
4720.53
4788.82
4707.02
4770.5
4701.45
4786
4890.55
4797
4677.21
4809
4647.71
4658.3
4665.72
4816
4818
4606.84
4629.01
4818
4610.81
4817 .41
4818

4598.48
4589.92

4595.78

Riverbed

Conductance

(fir2/day)

1.
1.
1.
1.
1.
1.
1.
1.
J0E+05
10E+05
0E+05
10E+05
10E+05
A0E+05
10E+05
10E+05
A10E+05
10E+05
T0E+(05
0E+0S
40E+05
A10E+05
J0E+05
1.
10E+05
10E+05
10E+05
.10E+05
10E+05
10E+0S
.10E+05
10E+05
JA0E+0S
.10E+05

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

UL ST (I (DI W T I [ (AT (I W

10E+05
10E+05
10E+05
10E+05
10E+05
10E+05
10E+05
10E+05

10E+05

1.10E+05

1.

10E+05

1.10E+05
1.10E+05
1.10E+05
1.10E+05

1.57E+05

1.57E+05

1.57E+05

Main Document Tables T-

River Bottom

Elevation (ft)
4762.07
4778.5
4718.46
4797
4715.78
4804.5
4713.72
4811.5
4709.81
4832.5
4705.43
4840.5
4851
4700.6
4863.5
4699.08
4879.5
4697.22
4893.5
4682.79
4755.82
4669.82
4737.5
4664.52
4753
4654.02
4764
4641.1
4776
4612.6
4622.86
4630.04
4783
4785
4572.26
4594.48
4785
4576.84
4583.2
4785

4561.11
4548.08

4556.51

Reach

Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Sheliey
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Heise to Shelley
Shelley to Near
Blackfoot
Shelley to Near
Blackfoot

Shelley to Near
Blackfoot
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Table 3 (contd.). List of model cells containing river cells representing the Snake River.

Row

78
79
80
80
81
81
81
81
81
81
81
81
82
82
82
82
82
82
82
82
82
82
B2
33
83
83
83
84
84
84
84
84
85
85
85
856
85
85
85
86
86
86
86

Column

150
148
147
148
139
140
141
142
143
144
145
146
128
129
130
131
132
133
134
135
136
137
138
127
115
116
126
114
1156
116
125
126
112
113
114
115
116
122
123
124
112
113
114

Stage
(f)

4575.03
4569.54
4553.89
4560.89
4491.97
4501.35
4513.71
4521.68
4527.72
45635.9
4541.93
4547 .91
44181
442353
4431.3
4435.75
4442 82
4448.35
4456.59
4464.03
4472.21
447715
4485.21
4408.11
4354.09
A357.37
4402.41
4353.66
4354.09
4357.37
4393.24
4399.29
4353.76
4353.66
4353.66
4354.09
4357.37
4378.63
4382.95
4387.28
4353.76
4353.66
4353.66

Riverbed
Conductance
{ft*2/day)
1.57E+05
1.57E+05
1.57E+05
1.567E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.67E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.567E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
1.57E+05
9.90E+04
9.90E+04
9 90E+04
9.90E+04
9.90E+04
9.80E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04

River Bottom

Elevation (ft)
4532.01
4526.38
4510.25
4517.62
4453.9
4461.96
447278
4478.88
4434 18
4491.21
4497 .1
4503.68
4383.03
4388.8
4396.07
4400.34
4407.11
44122
4419.38
442576
4433.43
4438.74
4447 49
4372.24
4314.81
4318.34
4365.84
4314.18
4314.81
4318.34
4354.98
4361.92
4313.88
4314.01
4314 .18
4314.81
4318.34
4336.93
434212
4347.59
4313.88
4314.01
431418

Reach

Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Shelley fo Near Blackfoot
Shelley to Near Blackfoot
Shelley to Near Blackfoot
Near Blackfoot o Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoof to Neeley
Near Blackfoot 1o Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
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Table 3 (contd.). List of model cells containing river cells representing the Snake River.

Row

Column

115
118
117
118
119
120
121
111
112
113
114
107
108
110
111
112
113
114
115
106
107
108
109
110
111
112
113
114
115
104
105
106
107
108
109
110
111
112
113
114
115
103
104

Stage (ft)

4353.66
4357.37
435068
4360.26
4363.43
43656.87
4373.64
4353.66
4353.76
4353.66
4353.66
4353.56
4353.67
43563.66
436366
4353.7
4353.66
4353.66
4353.66
43563.18
4353.56
4353.66
4363.67
4353.66
4353.66
43583.7
4353.68
4353.66
4353.66
4353.12
4352.87
4353.18
4353.56
4353.66
4363.87
435366
4353.66
4353.7
4353.66
4353.86
4353.66
4352.68
4353.12

Riverbed
Conductance (ft*2/day}
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.00E+04
9.00E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
0.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.80E+04
9.90E-+04
9.90E-+04
9.90E+04
9.90E+04
9.80E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04

River Bottom
Elevation {ft}
4314.27
4318.34
4320.81
4320.66
4323.18
4325.32
4332.18
4313.61
4313.88
4314.01
4314.18
4311.31
4313.3
4313.41
4313.61
4313.73
4314.01
4314.18
4314.18
4310.06
4311.31
4312.48
43133
4313.41
4313.61
4313.73
4314.01
4314.18
4314.18
4308.02
4308.82
4310.08
4311.31
4312.48
4313.16
4313.41
4313.61
4313.73
4314.01
4314.18
4314.18
4306.46
4308.02

Reach

Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot {o Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Negley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
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Table 3 (contd.). List of model cells containing river cells representing the Snake River,

Row

Column

105
108
107
108
109
110
100
101
102
103
104
105
106
107
108
109
99
10C
101

Stage (ff)

4353.29
4353.18
4353.56
4353.66
4353.67
4353.66
434882
4350.99
4352.79
4352.77
4353.12
4353.29
4353.18
4353.56
4353.66
435387
432791
4348.46
4350.99
4352.79
4352.77
427349
424065
424808
417275
4190.45
4192.86
4195.25
4195.28
4195.02
4195.44
4196.01
4195.99
4196.08
4195.54
419562
4196.07
419618
4195.92
4196.18
4196.18
4196.18
4196.6

Riverbed
Conductance (ft"2/day)
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
9.90E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04

River Bottom
Elevation (ft)
4308.74
4310.06
4311.31
4312.48
4313.16
4313.41
4299 47
4302.4
430513
4306.06
4308.02
4308.74
4310.06
4311.31
4312.48
4313.16
4277.3
4298.4
4302 .4
430513
4308.06
4222 01
4188
4196.01
41232
4140,28
4141.68
4142 87
4141.95
4141.09
4140.29
4140.01
4138.83
4138.09
4138.65
4135.82
4134.87
4133.16
4132.94
4133.16
4133.49
413413
4140.24

Reach

Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot to Neeley
Near Blackfoot o Neeley
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley fo Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
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9

Table 3 (concluded). List of model cells containing river cells representing the

Snake River.

Row Column

95 96
95 97
96 82
96 83
96 90
96 93
96 94
97 84
97 85
o7 86
o7 87
o7 88
97 89
97 9N
97 92

Stage (ff)

4202.58
4217.18
4196.17
4196.18
4195.04
4194.75
4195.68
4196.18
4196.18
4196.18
4196.18
4196.18
4198.11
4105.04
4105.87

Riverbed
Conductance (ft*2/day)
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04
3.51E+04

River Bottom
Elevation (ft)
4147.47
4163.29
4134.81
4135.79
4133.79
4135.54
4137.93
4135.79
4136.22
4136.67
4137.15
41375
4137.54
4133.79
4135.33

Reach

Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
Neeley to Minidoka
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Table 4. List of model cells containing drains representing springs in the
Thousand Springs region.

Row

70
69
68
66
65
65
64
62
61
59
58
57
54
53
51
50
50
49
48
47
47
46
46
45
44
43
42
42
41
40
39
38
37
37
36
36
36
35
34
33
32
31
31
30
25

Column

30
29
29
28
28
3
26
24
23
22
21
20
18
17
14
13
12
11
11
13
12
13
12
12
12
12
12
13
13
13
14
14
14
13
14
16
15
14
14
14
14
14
13
13
6

Drain Elevation (ft)
Elevation (ft)

3693.77
3682
3661

3645.97

3622.07

3608.07
3591

3540.61
3506
3455

3419.59
3372

3250.03

3241.2
3180

3150.01

3128.01

3100.02
3100

3128.27

3107.83

3115.92

3094.06
3075

3059.08
3050

3072.47

3096.3

3098.59

3095.04

3074.71

3072.87
3047
3058
3016

3072.35

2998.77
3007

2978.97

2949.78

2931.01

2939.88

2923.55

2957.8
2787

Drain
Conductance
(ftr2/d)
87.56523
10.34861
68.46006
31711.91
72169.5
7904.277
1273.676
453546.3
3502.608
278.6165
1512.49
604.996
941722.4
103486.1
254.8987
185533.5
456229.9
189105
1058810
149180.1
641034.8
179172.9
307529.7
404081.1
15649154
500578.1
29734.38
24060.39
2168.47
944.3784
33836.27
949.0182
11480.96
34838.79
9501.488
1118337
1158866
19541.74
78008.92
21851.87
14574 .1
6660.319
12483.49
1236.11
75081.41

Reach

Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl
Devils Washbowl to Buhl

" Devils Washbowl to Buhl

Devils Washbowl to Buhl
Devils Washbowl to Buhl
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Buhl to Thousand Springs
Thousand Springs
Thousand Springs
Thousand Springs
Thousand Springs
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Thousand Springs to Malad
Malad
Malad
Malad to Bancroft
Malad to Bancroft
Malad to Bancroft
Malad to Bancroit
Malad to Bancroft
Malad to Bancroft
Malad to Bancroft
Malad to Bancroft
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Table 5. List of tributary basins.

Basin Average Annual  Average Annual  Average Tributary
Tributary Valley Tributary Valley  Valley Underflow for
Underflow for Underflow for ESPAM Model
ESPAM Model (acre ESPAM Model (ft"3/stress period)
feet) (ft"3)
American Falls 20,000 8.51E+08 4 25E+08
Big Lost River 48,000 2.09E+09 1.04E+09
Big Wood River 8,900 3.87E+08 1.93E+08
Birch Creek 69,000 3.02E+09 1.51E+09
Blackfoot River 12,000 5.03E+08 2.51E+08
Camas/Beaver Creeks 193,600 8.39E+09 4.20E+09
Clover Creek 8,900 3.87E+08 1.93E+08
Goose Creek 24,000 1.04E+09 5.22E+08
Henrys Fork 98,000 4.25E+09 2.13E+09
Lincoln/Ross Creeks 3,600 1.55E+08 7.73E+07
Little Lost River 138,000 5.99E+09 3.00E+09
Little Wood River 21,000 9.28E+08 4 64E+08
Medicine Lodge Creek 8,000 3.48E+08 1.74E+08
Palisades 6,200 2.71E+08 1.35E+08
Portneuf River 56,000 2 44E+09 1.22E+09
Raft River 75,000 3.25E+09 1.62E+09
Rexburg Bench 16,000 6.96E+08 3.48E+08
Rock Creek 45000 1.97E+09 9.86E+08
Silver Creek 47,000 2.05E+089 1.02E+09
Teton River 2,700 1.16E+08 5.80E+07
Thorn Creek 5,300 2.32E+08 1.16E+08
Willow Creek 26,000 1.12E+08 5.61E+08
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Table 6. List of perched non-Snake River reaches.

Reach Acre Feet/Stress Period Acre Feet/Year
Basin 31 Flood Control 1,829 3,857
Below Magic Reservoir 41,023 82,046
Big Lost River 1 7,279 14 557
Big Lost River 2 3,651 7,302
Big Lost River 3 4,511 9,022
Big Lost River 4 2,084 4,168
Big Lost River Flood Control 8,435 12,870
Big Wood River Below Gooding 3,493 6,985
Birch Creek 4,144 8,288
Birch Creek Hydropower Discharge 6,227 12,455
Camas Creek 13,827 27,654
Camas National Wildlife Refuge 3,712 7,425
Little Lost River 3,088 6,175
Little Lost River Flood Control 3,723 7,446
Little Wood River 1 2,436 4,873
Little Wood River 2 1,005 2,180
Little Wood River 3 1,699 3,397
Lone Tree Flood Control {(Camas Creek) 3,079 6,157
Medicine Lodge Creek 16,202 32,404
Milner-Pickets (TFCC) 1,408 2,815
Mud Lake 4,514 9,028
Murtaugh Lake 1,675 3,351
Total 137,233 274,466
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Table 7. List of canals represented with specified flux.

Canal Name

Northside Main

Northside Wilson Lake

Milner-Gooding

Aberdeen-Springfield

Northside Laterals above Rim
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Table 8. Six-year average of measured lysimeter winter ET for Kimberly, Idaho.

Month Average ET, mm/day Average ET, fi/month
November 0.7 0.069
December 0.4 0.041

January 0.6 0.061
February 1.0 0.093
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Table 9. Calculated Winter-Time ET Rates, Feet Per Month

Station County ID Elev Nov ET | Dec ET | Jan ET | Feb ET
(ft) (ft) (ft) (ft) (ft)

Aberdeen Exp | Bingham 100010 4400 0.069 0.041 0.061 0.072
American Power 100227 4320 0.069 0.041 0.061 0.075
Falls 3 NW
Arco 3 SW Butte 100375 5330 0.050 0.041 0.042 0.042
Ashton Fremont 100470 5110 0.059 0.041 0.049 0.049
Blackfoot Bingham 100915 4320 0.069 0.041 0.061 0.075
Fire Dept
Bliss Gooding 101002 3270 0.069 0.041 0.061 0.109
Burley FAA Cassia 101303 4160 0.069 0.041 0.061 0.080
AP
Dubois Exp Clark 102707 5460 0.046 0.038 0.038 - 0.038
Fort Hall Bingham 103297 4500 0.069 0.041 0.061 0.069
Indian Age
Hamer 4 NW | Jefferson 103964 4800 0.069 0.041 0.060 0.060
Hazelton Jerome 104140 3770 0.069 0.041 0.061 0.093
IF 16 SE Bonneville 104456 5720 0.036 0.030 0.030 0.030
IFFAA AP Bonneville 104457 4740 0.069 0.041 0.061 0.061
Jerome Jerome 104670 3770 0.069 0.041 0.061 0.093
MacKay Custer 103462 5910 0.029 0.024 0.024 0.024
Ranger St
Minidoka Minidoka 105980 4210 0.069 0.041 0.061 0.079
Dam
Paul Minidoka 106877 4150 0.069 0.041 0.061 0.080
Picabo Blaine 107040 4380 0.068 0.041 0.057 0.057
Poc WB AP Bannock 107211 4770 0.069 0,041 0.060 0.060
Richfield Lincoln 107673 4310 0.069 0.041 0.061 0.075
Shoshone Lincoln 108380 3970 0.069 0.041 0.061 0.086
St Anthony Fremont 108022 4970 0.065 0.041 0.054 0.054
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Table 10. Irrigation Entity Table

Entity ID Entity Name

IESWO1 A&BI1

IESWO02 Aberdeen Springfield 1
IESWO03 Arcadia 1

IESW04 Bell Rapids 1

TESW05 Big Lost River 3
IESWO06 Big Spring 3

IESWQ7 Big Wood 4

TESW08 Blaine 1

IESW09 Burgess 5

IESW10 Burley 1

IESWI11 Butte and Market 1
IESW12 Canyon Creek 3
IESW13 Consolidated Farmers 4

Main Document Tables T- 16

Irrigation Company(ies) Included in Entity

A & B Irrigation District

Aberdeen Springfield Canal Co
Arcadia Reservoir & Canal Co Lid
Bell Rapids Mutual Irrigation Co
Big L.ost River Irrigation District
Moore Water Users Association
Darlington Land & Irrigation Co
Banbury Pipe Company Inc

Big Spring Water Users Assn
Hagerman Water Users Association
Justice Ditch Co

Thorpe Ditch Co

Big Wood Canal Company

Mullins Canal & Reservoir Co
Blaine County Canal Co

Burgess Canal & Irrigating Co
North Rigby Irrigation & Canal Co Inc
Parks & Lewisville Irrigation Co Inc
Rigby Canal & Irrigation Co

Clark & Edwards Canal Company
Burley Irrigation District

Butte & Market Lake Canal Co
Enterprise Irrigation District
Canyon Creek Lateral Ditch Assn
Canyon Creck Canal Co Ine
Roxana Canal Co

Consolidated Farmers Canal Co Ltd
Saurey-Sommer Ditch

Island Ward Canal Co
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Entity ID
IESW14

IESW15
I[ESW16

IESW17
IESWISB

IESW20

IESW21
[ESW22

[ESW23

IESW24
IESW25

IESW26

IESW27
IESW238

Entity ID
IESW29

[ESW30

IESW31
IESW32

IESW33

Entity Name
Corbett 4

Dewey 1
Egin 2

Fall River 1
Falls 3

Harrison 5

Heise 1
Idaho 2

Independent 6

Island 1
Little Wood 2

Long Island 1

Mikner 1
Minidoka 1

Entity Name
Mud Lake 4

New Sweden 7

North Fremont 1
North Side 4

Osgood 4
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Irrigation Company(ies) Included in Entity
Corbett Slough Ditch Company
Eastern Idaho Water Co

Little Butte Trrigation Co Ltd
Younie Ditch Co

Dewey Canal Co

Egin Bench Canals Inc

St Anthony Union Canal Co

Fall River Irrigation Co

Falls Irrigation District

Warm Creek Irrigation Co

Fort Hall Indian Reservation
Rudy Irrigation Canal Co Ltd
Harrison Canal & Irrigation Co
Kite And Nord Ditch

Enterprise Canal Co Ltd

Butler Island Canal Co

Heise Canal

Snake River Valley Trrigation District
Idaho Trrigation District

Lowder Slough Canal Co

West Labelle Irrigation Co Ltd
Dilts Irrigation Company
Ellis-Bramwell Ditch C0
Independent Tirigation Co
Labelle Irrigating Co

Island Irrigation Co

Fish Creek Reservoir Company Inc
Little Wood River Canal Co
Long Island Irrigation Co

Milner Irrigation District
Minidoka Irrigation District
Owsley Canal Company

Holley Water Users Assn
Irrigation Company(ies) Included in Entity
Level Canal Co Inc

Mud Lake Water Users Inc
Smith-Maxwell Ditch Co

New Sweden Irrigation District
Shattuck lrrigation Co.

Stattuck Irrigation Co

Long Island Canal Co

Blackfoot Trrigation Co
Woodville Canal Co

North Fremont Canal Systems Inc
King Hill Irrigation District
North Side Canal Company Ltd
American Falls Reservoir Dist #2
Dba Bs Farms & Irrigation Co
Owners Mutual Irrigation Co
Osgood Canal Co Inc
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H & W Water Users Association
Bear Island Water Assn
TESW34 Peoples 8 Watson Slough Ditch And Irrigation Companies
Peoples Canal & Irrigation Co
Parsons Ditch Co
Wearyrick Ditch Co
Trego Ditch Co
Danskin Ditch Company
New Lavaside Ditch Company Limited
Riverside Canal Co

IESW33 Progressive 2 Poplar Irrigation District
Progressive lrrigation District
IESW36 Reid 6 Consolidated Feeder Canal Co

Liberty Park Irrigation Co Ing
Texas Slough Irrigating Canal Co
Reid Canal Co

Lenroot Canal Co

Sunnydell Irrigation District
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Entity TD Entity Name Irrigation Company(ies) Included in Entity
TESW37 Reno 1 Reno Ditch Company Inc
IESW38 Rexburg 1 Rexburg lrrigation Co C/O Keith Erikson
IESW39 Silley 2 Silky Lateral Ditch Water Users Assn
Silky Irrigation District
IESW40 Southwest 2 Oakley Canal Co
Southwest Irrigation District
IESW41 Twin Falls 1 Twin Falls Canal Co
IESW42 Twin Groves 6 Wilford Irrigation And Mfg Co
Pioneer Ditch Co Lid
Twin Groves Irrigation & Manufacturing
Salem Union Canal Co Ltd

Farmers Friend Irrigation Co Ltd
North Salem Agr & Mill Canal Inc
IESW43 Woodmansee Johnson 6 Woodmansee-Johnson Canal Company
Teton Irrigation And Manufacturing Co
Pincock Garner Ditch Association
Pincock-Byington Ditch Co
Wolf Ditch Company
Teton Istand Feeder Canal Co
IESW44 Jefferson 3 Jefferson Irrigation Co
Producers Irrigation Co
Monteview Canal Co Inc
Monteview Canal Co Inc
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Table 11. Sprinkler ratios used for interpolation between specific years.

ENTITY_ID | May-80 | May-82 | May-87 | May-92 | May-97 | OQct-00
IEGW501 0.150 0.254 0.520 0.686 0.710 0.720
IEGW502 0.200 0.230 0.310 0.389 0.500 0.550
IEGW503 0.875 0.885 0.910 0.934 0.960 0.975
IEGW504 0.981 0.982 0.986 0.989 0.992 0.994
IEGW505 0.983 0.986 0.992 0.997 0.999 1.000
IEGW506 0.770 0.803 0.880 0.917" 0.945 0.960
IEGWS507 0.580 0.657 0.830 0.904 0.920 0.930
IEGW508 0.530 0.617 0.840 0.940 0.963 0.970
IEGW509 0.640 0.692 0.810 0.864 0.880 0.890
IEGWB00 1.000 1.000 1.000 1.000 1.000 1.000
IESW000 0.333 0.373 0.499 0.555 0.610 0.634
IESWOO1 0.150 0.311 0.520 0.676 0.710 0.720
IESW002 0.825 0.847 0.900 0.919 0.930 0.936
IESW005 0.700 0.731 0.810 0.880 0.934 0.970
IESW007 0.147 0.165 0.215 0.239 0.263 0.276
IESW008 0.540 0.570 0.650 0.729 0.800 0.840
IESW009 0.015 0.050 0.130 0.185 0.220 0.250
IESWO010 0.010 0.150 0.600 0.733 0.850 0.910
IESWO11 0.440 0.467 0.530 0.560 0.590 0.610
IESW012 0.867 0.870 0.875 0.879 0.897 0.897
IESW014 0.210 0.286 0.450 0.545 0.640 0.700
IESW015 0.000 0.000 0.010 0.015 0.025 0.030
IESWO016 0.050 0.136 0.750 0.808 0.860 0.890
IESWO018 1.000 1.000 1.000 1.000 1.000 1.000
IESW019 1.000 1.000 1.000 1.000 1.000 1.000
IESW020 0.050 0.082 0.190 0.226 0.260 0.280
IESW022 0.250 0.384 0.650 0.763 0.850 0.900
IESW025 0.210 0.318 0.600 0.700 0.800 0.860
IESW027 0.000 0.000 0.230 0.307 0.360 0.380
IESW028 0.130 0.219 0.550 0.714 0.800 0.840
IESW029 0.035 0.068 0.150 0.240 0.320 0.420
IESW030 0.180 0.292 0.630 0.801 0.910 0.960
IESW031 0.950 0.961 0.980 0.998 1.000 1.000
IESW032 0.000 0.000 0.600 0.750 0.840 0.900
IESW033 0.970 0.976 0.990 0.996 1.000 1.000
IESW034 0.540 0.582 0.690 0.741 0.800 0.830
IESW035 0.020 0.056 0.190 0.278 0.360 0.410
IESW036 0.020 0.049 0.120 0.149 0.180 0.195
IESW037 0.145 0.229 0.420 0.608 1.000 1.000
IESW038 0.251 0.286 0.251 0.216 0.251 0.251
IESWO039 0.270 0.296 0.270 0.243 0.270 0.270
IESW040 0.400 0.528 0.800 0.921 1.000 1.000
IESW041 0.000 0.017 0.120 0.188 0.250 0.285
IESW044 0.020 0.041 0.100 0.161 0.300 0.370
IESWO051 0.000 0.000 0.000 0.000 0.040 0.070
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IESW052 0.000 0.000 0.000 0.000 0.040 0.070
IESWO53 0.530 0.560 0.610 0.630 0.645 0.660
IESWO054 0.319 0.359 0.467 0.510 0.560 0.588
IESW055 0.000 0.007 0.028 0.041 0.059 0.072
IESWO56 0.451 0.468 0.507 0.536 0.571 0.584
IESWO57 0.648 0.676 0.767 0.813 0.813 0.813
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Table 12. Measured Return Flow Sites.

Site# Station ¥ Site Name Location
Henry's Fork Rlver basin:
1 13055300 Farmers Own Canal - Black Spring Lat. 44 02'59" Long. 111 32'20"
2 13055337 Rexburg Canal drain nr Thornton Lat. 43 4B8'55" Long. 111 53"15"
3 13050543 Independent Canal drain
4 13056550 Texas Slough Canal nr Thornton Lat. 43 47' 58" Long. 111 54' 49"
5 13056600 Texas Slough nr Rexburg Lat. 43 477" Long. 111 53'45.
6 13056650 Liberty Park Canal Lat. 43 47'24" Long. t11 55'27"
7 13056850 Bannock Jim Spring Slough Lat. 43 46'30" Long. 111 561"
Snake River to American Falls Reservoir:
8 13057000 Scott's Slough Lat. 42 44'32" Long. 111 58'20"
9 13057020 Dry Bed Lat. 43 42"11" Long. 112 04'13"
10 13057030 South Parks Lat. 43 41'19" l.ong. 112 03'47"
11 13057045 Butte Market Lake Canal Lat. 43 39'20" Long. 112 05'27"
12 13057100 Burgess drain nr !daho Falls Lat. 43 36'60" Long. 112 03'03"
MNear to and just below American Falls Reservolr:
13 13069548 Sterling Waste Lat. 43 01'49" Long. 112 43'40"
14 13068565 Aberdeen Waste Drain Lat. Long.
18 13076210 Tartar Waste Lat. 42 52'40" Long. 112 51'23"
18 13077650 Rack Creek nr American Falls Lat. 42 39"10" Long. 113 01'00"
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Table 12 (continued). Measured Return Flow Sites.

Site# Station # Site Name Location
ré_elow Amerlcan Falls Reservoir to King Hill:

17 13082080 F drain nr Declo Lat. 42 32' 48" Leng. 113 37' 14"
18 13082032 D-3 drain Lat. 42 36'49" Long. 113 36'10"
19 13082062 D-5 drain nr Rupert Lat. 42 3315 Long. 113 38'38"
20 13082064D-4 drain nr Rupert Lat. 42 345" Long. 113 38'25"
21 13082320 Marsh Creek nr Declo Lat. 42 31'26" Long. 113 40'02"
22 13082330 Spring Creek nr Declo Lat. 42 31'01" Long. 113 41'03"
23 13084705 D-16 drain nr Heyburn Lat. 42 32'30" Long. 113 45724"
24 13084707 B drain nr Heyburn Lat. 42 33'33" Leng. 113 47'01"
25 13085060 D-17 drain nr Heyburn Lat. 42 32'53" Long. 113 50'51"
26 13085065 Main drain North nr Heyburn Lat. 42 33'02" Leng. 113 51'569"
27 13085070G drain nr Burey Lat. 42 31'56" Long. 113 53"12"

28  13085080J drain nr Burley Lat. 42 31'53" l.ang. 113 §3'29"
29 130849690 Irr drain nr Hansen Lat. Long.

30 13089695Twin Falls Coulee Lat. 42 341" Long. 114 20'32"
31 13090370 Fish Hatchery Waste 0 Lat. 42 35'29" Long. 114 26'03"
32 13090460 Perrine Coulee nr Twin Falls Lat. 42 35'53" Long. 114 28'20"
33 13091733 Jerome Golf Course Drain 1 Lat. 42 38 03" Long. 114 31'03"
34 13093150 Sonnicksen drain Lat. 42 38'40" Long. 114 33'26"
35 13093190 Sucker Flat drain nr Filer (LSLQ) Lat. 42 38'25" Long. 114 35'30"
36 13093550 Cedar Draw nr Filer Lat. 42 39'13" Long. 114 39'1§"
37 13093900 Waste | nr Buhl Lat. 42 39'33" Long. 114 41'28"
38 13004050 .8 at Rivers Edge Lat. 42 40'27" Long. 114 44'27"
39 13084700 Mud Creek nr Buhl Lai. 42 39'33" Long. 114 47'20"
40 13095060 Fish Hatchery drain upper Lat. 42 32'60" Long. 114 4921"
41 13095061 Fish Hatchery drain lower Lai. 42 40'01" Long. 114 48' 60

42 13095360 S. Coulee (Cedar Draw) Lat. 42 41'45 Long. 114 48'19"
43 130954890 Irr Ditch te Blind Canyon Lat. 42 42'28" Long. 114 4730"

44 13133785 Drain nr Bickel Springs Lat. 42 45'28" Long. 114 50'48"

45 13152450 Irr Ditch nr Bliss Lat. 42 55'56" Long. 118 00'19"

46 13152895W. drain nr Tuitle (Drain 1o Malad River) Lat. 42 51'50" Long. 114 51' 58"
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Table 13. Assignment of return flows, diversions to surface water entities.
Below American Falls:

Group

1

Irr. Entity

IESW032

13152450
13152895
13133785
13094050
13095480
13095360
13093150
13091733

Assigned Return flows

Irr. Ditch nr Bliss

W. Dr. nr Tuttle (to Malad)
Drain nr Bickel Srings

J8 at Rivers Edge

Irr. Drain to Blind Canyon
S. Coulee(Ceder Draw)
Sonnickson drain

Jerome Golf drain

Water Supply: Historic Diversions

13087000 T. F. Northside
13086510 'A’ Lateral in Gooding
13086520 N. Side Cross-cut

IESW028

13085080
13085085
13084707
13084705
13082064
13082062
13082032

D-17 drain nr Heyburn

Main drain North nr Heyburn
B drain nr Heyburn

D-16 drain nr Heyburn

D-4 drain nr Rupert

D-5 drain nr Rupert

D-3 drain

13080000 Minidoka Northside

IESWO010

13082060
13082320
13082330
13085070
13085080

F drain nr Decle
Marsh Creek nr Declo
Spring Creek nr Declo
G drain nr Burley
J drain nr Burley

Minidoka South (13080500)

IESW041

13089690
13089695
13080370
13080460
13093190
13093550
13093900
13094700
13095061
13025060

Irr drain nr Hansen

Twin Falls Coulee

Fish Hatchery Waste 0
Perrine Coulee nr Twin Falls

Sucker Flat drain nr Filer (LSLQ)

Cedar Draw nr Filer
Waste | nr Buhl

Mud Creek nr Buhl

Fish Hatchery drain lower
Fish Hatchery drain upper

13087500 Twin Falls Southside Canal
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Table 13(continued). Assignment of return flows, diversions to surface water

entities.
Above American Falls
Group Irr. Entity Assigned Return flows Water Supply; Historic Diversions
5 IESWO002 13069548 Sterling Waste 13061610 Aberdeen Springfield Canal
13069565 Aberdeen Waste Drain
13076210 Tartar Waste
6 [ESW031 13055300 Farmers Own Canal - Black Spring 13047575 Farmers Own
13047305 Yellowstone
13047415 Marysville
7 IESWO016 13050543 Independent Canal drain 13049725 St Anthony Canal
) 13049550 Last Chance
(Ave. of 1989-90 USGS Data) 13050525 Egin Canal
13050530 St Anthony Union Fdr
13050535 Independant Canal
8 IESWO011 13057045 Butte Market Lake Canat 13057025 Butte Market Lake
9 IESWO036 13058550 Texas Slough Canal nr Thornton 13038392 Sunnydeli Canal
13056650 Liberty Park Canal 13038426 Lenroot Canal
13056850 Bannock Jim Spring Slough 13038431 Reid Canal
13056600 Texas Slough nr Rexburg 13038435 Bannock Jim
13038436 Hili Pitinger
13038437 Nelson Cory
13038434 Texas Feeder
13055323 Rexburg Canal
13055334 Rexburg irr.
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Table 13{concluded). Assignment of return flows, diversions to surface water

entities.
Above American Falls
Group Irr. Entity Assigned Return flows Water Supply: Historic Diversions
19 IESWO009 13057000 Scott's Slough 13038110 Burgess
IESW020 13057020 Dry Bed 13038115 Clark & Edwards
IESW023 13057030 South Parks 13038180 Rigby Canal
IESWO024 13057100 Burgess drain nr Idaho Falls 13037975 Eagie Rock
IESW026 13037977 Eagie Rock ab Will Cr

13037985 Enterprise
13038025 Butler !sland
13038030 Ross and Rand
13038050 Steele Canal
13038055 Harrison Canal
13038065 Cheny Canal
13038080 Butler Island #2
13038085 Boomer Canal
13038098 Kite & Nord
13038145 Croft Pump
13038387 Nelson Canal
13038388 Mattson Creg
1303838150 East Labelle
13038205 Dilts Canal
13038225 W. Labelle Long Is
13038340 White Canal
13038360 Bramwell
13038362 Elfis Canal
13038210 Island Canal
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Table 14. Estimated return flow lags for the ten groups of surface irrigation

entities.
Group lrr. Entity Results: Ann:. Return and Lags
1 IESW032 Total Annual Retumed (%) => 46
Month => 1 2 3 4 5
Lag. Ret. (%) == 1.6 0 0 0
2  IESW028 Total Annual Returned (%) => 4.80
Month == 1 2 3 4 5
Lag. Ret. (%) => 2 1 1 1 G
3 IESW010 Total Annual Returned (%) => 10.0
Month => 1 2 3 4 5
Lag. Ret. (%) == 4 3 3 0 0
4 IESW041 Total Annual Returned (%) => 8.4
Month => 1 2 3 4 5
Lag. Ret. (%) => 3 2 1.5 0 0
5 IESWO002 Total Annual Retumned (%) => 59
Month => 1 2 3 4 3
Lag. Ret. (%) => 3 2 1 0 0
[+ [ESW031 Total Annual Retumed (%) => 19.5
Month => 1 2 3 4 5
Lag. Ret. (%) => 7 4 3 3 2
7 IESWG016  Total Annual Returned (%) => 1.6
Month => 1 2 3 4 5
Lag. Ret. (%) => 1 0.6 0 0 0
8 [ESW011 Total Annual Returned (%) => 1.8
Month => 1 2 3 4 5
Lag. Ret. (%) => 1.8 0 0 0 0
9 IESWO036 Total Annual Returned (%) => 29.2
IESW038 Month => 1 2 3 4 5
Lag. Ret. (%) => 12 10 5 2 1
10 IESWO009 Total Annual Returned (%) => 272 _
IESW020 Month => 2 3 4 5
IESW023 Lag. Ret. (%) => 11 7 4 4 0
IESWO024
IESWO026
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Table 15. Normalized annual Silver Creek flows.

Year Annual Normalized Dampened
(ac-ft) Flux Normalized
Flux
1980/81 32383 117 1.08
1981/82 26539 0.96 0.99
1982/83 38543 1.39 113
1963/84 38628 1.39 113
1984/85 35633 128 1.1
1985/86 30812 1.11 1.04
1986/87 31684 1.14 1.05
1987/88 22700 0.82 0.94
1988/89 20691 0.75 0.92
1959/90 23278 0.84 0.95
1990/91 21075 0.76 0.92
1991/92 20976 0.76 0.92
1992/93 18595 0.67 0.89
1993/94 27301 0.99 1
1994/95 18327 0.66 0.89
1995/96 31272 1.13 1.04
1996/97 32242 1.16 1.05
1997/98 33892 1.22 1.07
1998/99 33167 1.2 1.07
1999/00 30072 1.09 1.03
2000/01 22677 0.82 0.94
2001/02 19080 0.68 0.9
Av
Annual 27708 1 1
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Classification Acres Percent of Study Recharge Rate
Area
Dry Farm 95,000 1.3% _ ZEro
Water and Wetlands 65,000 0.9% Precipitation minus
three feet/vear
Cities and Industrial 48,000 0.7% Negative 1.2

Areas

feet/year
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Table 17. Apportionment of Mud Lake fixed point pumpage.

Fixed Point No. Wells Adjusted No. Wells Percent of Total
Volume
Buck Springs 7 7 18%
Bybee 13 14 35%
Holley 6 8 21%
North Lake, East 12 7 18%
North Lake, West 3 3 8%
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Table 18. Fixed point pumpage by stress period (ac-ft/stress period).
Stress Period Snake/Teton Mud Lake - Recharge Wetlands

Exchange Exchange Adjustment Adjustment
Wells Wells
S1 -6,590 -76,926 o -11,241
52 0 -34,089 0 -5,294
33 -13,082 -73,313 0 -11,241
34 0 -17,936 0 -5,204
55 -1.437 -57,902 0 -11,241
S8 0 0 0 -5,204
57 -914 -23,598 0 -11,241
S8 0 0 0 -5,294
S9 -687 -15,563 0 -11,241
S10 0 0 0 -5,294
S -5,800 -69,008 0 -11,241
512 0 0 0 -5,294
513 -1,786 -60,730 0 -11,241
S14 0 0 0 -5,294
515 -2,045 -112,847 0 -11,241
818 0 0 417 -5,294
S17 -22,395 -167,982 12,933 -11,241
S18 0 -21,792 8,344 ~5,294
S19 -7,379 -145,601 0 -11,241
520 0 -42.358 0 -5,294
S21 -3,709 -159,949 626 -11,241
S22 -9,177 -52,773 8,344 -5,294
523 -18,8657 -145,528 12,725 -11,241
524 -3,098 -40,742 8,344 -5,294
525 -47.842 -163,418 30,246 -11,241
826 0 -36,997 8,344 -5,294
527 -998 -77,893 0 -11,241
528 0 -49,972 0 -5,254
529 -19,020 -156,706 0 -11,241
530 0 0 0 -5,294
531 -253 -34,435 0 -11,241
832 o -33,359 7,092 -5,294
8533 -443 -149,394 0 -11,241
534 0 0 417 -5,294
535 -103 -87,188 0 -11,241
536 0 -14,917 1,669 -5,294
837 -281 -52,254 0 -11,241
538 0 0 0 -5,294
539 -345 -62,114 0 -11,241
549 0 0 0 -5,294
3541 -6,774 -166,460 0 -11,241
842 -434 -43,060 0 -5,294
543 -51,473 -175,5985 37,963 -8,267
S44 0 0 12,308 -8,267
Average -5,107 -59,600 3,404 -8,268
Annual Average -10,215 -119,200 6,808 -16,535
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Table 19. Evapotranspiration-indexed scale used to vary off-site pumping

rates.
Year Index Year Index
1980 0.94 1991 1.03
1981 0.98 1992 1.11
1982 0.97 1993 0.94
1983 0.96 1994 1.09
1984 0.94 1995 0.94
1985 1.01 1996 0.97
1986 1.03 1997 0.94
1987 1.07 1998 0.93
1988 1.10 1999 0.96
1989 1.03 2000 1.01
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Table 20. Off-site well pumping for each model stress period (acre-ft per stress
period).

Well 1D

=
1)

D

Well ID

Well 1D

[+ N > BT L R N S N )

Well ID

0~ ®» b wN

Location Mame
Jefferson
Jefferson
Jetferson
Monteview
Monteview
Maonteview
Producers
Producers

Location Name
Jefferson
Jeffersan
Jeffersen
Menteview
Monteview
Meonteview
Producers
Producers

Location Name
Jefferson
Jefferson
Jefferson
Monteview
Monteview
Monteview
Producers
Froducers

Location Name
Jefferson
Jeffersen
Jefferson
Monteview
Monteview
Monteview
Producers
Producers

Location Name
Jefferson
Jefferson
Jetferson
Monteview
Manteview
Monteview
Producers
Producers

82
-410
-410
410
-204
-204
-204

-48
-48

512
~431
-431
-431
-215
-215
-218

=50
-50

522
-431
-431
-431
-215
215
215

-50
-50

$32
-405
-405
405
-202
-202
-202
47
47

542
-484
-484
-484
232
232
232

-54
-54

84
-405
-405
-405
202
-202
202

-47
47

$14
-447
-447
-447
223
273
223

52

52

324
-464
-464
-484
-232
-232
-232

-54
-54

534
-383
-393
~393
-198
-186
-196

-46
-46

$44
-418
-418
418
209
.209
-209
-48
-48

S5
~13,115
-13,118
-18,116

«8,540
-6,540
-6,540
-1,528
-1,526

515
-14,465
-14,455
-14,465

-7,218
-7,218
-7,218
-1,683
-1,683

525
-15,008
-15,009
-15,009

-7,484
7,484
7,484
1,746
-1,746

335
«12,709
-12,70%
-12,709

-6,338
-6,338
-6,338
-1,479
=1,478

56
-401
-401
-401
-200
-200
-200

-47
-47

516
-480
480
-480
229
229
-229

-54
-54

526
-393
-393
-393
-196
~198
=196

-48
«48

538
389
-389
-389
194
-194
-184

-45

-45

87
-12,980
-12,980
-12,980

-6,474
-6,474
-6,474
-1,510
-1,510

517
-14,874
-14,874
-14,874

-7,420
7,420
-7,420
-1,730
-1,730

827
-12,709
-12,709
-12,709

-6,338
-6,338
-6,338
-1,479
-1,479

837
12,573
12,573
-12,573

8,274
5,274
5,274
-1,453
1,453

58
-383
-383
-393
196
-196
-196

-46
-46

518
-431
-431
-431
=215
=215
-215

-50
-50

528
-456
-455
-456
=227
-227
-227

-53
-53

538
~401
-401
-401
=200
-200

59
-12,709
-12,709
-12,709

-65,338
-5,338
-6,338
-1,478
-1.479

S19
-13,926
-13,926
-13,926

-6,947
-6,947
-6,947
-1,620
-1,620

529
-14,736
14,736
-14,738

7,353
-7,353
7,383
-1,715
-1,71%

838
12,980
12,980
12,980

8,474
6,474
8,474
-1,510
1,510

$10
-422
-422
-422
-2
-211
-2

-49

820
-a47
-447
-447
-223
-223
223

52
52

830
-393
-393
-393
-196
-196
196

-48
-48

S40
-422
-422
-422
-211
-211
=211

-49
-49
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Table 21. Annual spring discharge (north side only) in the Milner to King Hill
reach.

Water Discharge

Year {cfs)
1980 6110
1981 5860
1982 5760
1983 5690
1984 6030
1985 5830
1986 6350
1987 6260
1988 5960
1989 5820
1990 5610
1991 5460
1992 5190
1993 5090
1994 5320
1995 5120
1996 5040
1997 5430
1998 5870
1999 5660
2000 5830
2001 5870
2002 5440
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Table 22. Estimated spring discharge by sub-reach in the Milner to King Hill

reach.

Subreach Name Number of Total Subreach Proportion
Model Cells Discharge of Milner to King Hill
(cfs) Discharge
Devil’s Washbowl to 17 1075 0.17
Buhl Gage
Buhl Gage to Thousand 12 1700 0.28
Springs
Thousand Springs 4 1879 0.31
Billingsley Creek 10 204 0.03
Malad Gorge 2 1199 0.19
Malad Gorge to Bancroft 10 97 0.02
Springs
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Table 23. Model cells representing individually measured or estimated springs.

Spring Row Column
Devils
Washbowl 66 28
Devils Corral 65 28
Blue Lakes 62 24
Crystal 54 18
Clear Lakes 50 12
50 13
Briggs 49 11
Box 47 12
47 13
Thousand
Springs 44 12
Malad 36 15
38 16
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Table 24. Summary of spring discharge calibration target data.

Spring Name
Devils
Washbowl
Devils Corral
Blue Lakes
Crystal
Clear Lakes
Brigas

Box

Malad
Thousand
Springs

Number of
Observations

5657
35
7470
1802
56
3462
7458
217

236

Start
Date

4/6/85
11/6/80
5/1/80
6/3/85
10/13/82
5/19/80
5/1/80
12/1/84

5/1/80

End
Date

9/30/00
3/6/01
8/15/02
2/18/02
1116/02
9/30/98
9/30/00
1211102

12/1102
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Main Document Tables T- 39

Table 25. Steady state river gain and spring calibration targets and model
predictions.

Steady State Target Steady State

Spring or Reach Name Discharge (fi*3/d) Discharge (ft*3/d)
Ashton to Rexburg 2.72E+07 2.67E+07
Heise to Shelley -5.14E+07 -5.19E+07
Shelley to Near Blackfoot -8.43E+07 -8.35E+07
Near Blackfoot to Neeley 2.27E+08 2.28E+08
Neeley to Minidoka 7.0BE+06 6.97E+06
Devils Washbow! to Buh! 8.86E+07 6.24E+07
Buhl to Thousand Springs 1.37E+08 1.32E+08
Thousand Ssprings 1.51E+08 1.70E+08
Thousand Springs to Malad 6.63E+06 5.34E+06
Malad 9.65E+07 1.04E+08
Malad to Bancroft 7.84E+06 1.14E+07
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Appendix TablesA - 1

Appendix A—Appendix Tables

Tables in Appendix

Table A-1. Mapping of tributaries to model cells.

Table A-2. Mapping of perched reaches to model cells.

Table A-3. Mapping of canal reaches to model cells.

Table A-4. Crop mix by county for each yeat.

Table A-5. Sprinkler percentage by irrigation entity for each model stress period.
Table A-6. Surface water diversions for each irrigation entity by stress period
Table A-7. Return flow volume by model stress period.

Table A-8. Canal leakage fraction applied to diversion volume, by model stress period.
Table A-9, Fixed point pumping cells represented in model.
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Appendix TablesA - 2

Table A-1. List of tributary basins and associated model cells.

Model Model Meodel Model
Tributary Row  Column Tributary Row Column

Bannock Creek 100 110 Little Wood River 33 71

Bannock Creek 100 111 Little Wood River 33 72

Big Lost River 5 106 Medicine Lodge Cr. 19 171
Big Lost River 5 107 Medicine Lodge Cr. 19 172
Big Wood River 30 50 Palisades 75 181
Big Wood River 30 5 Palisades 75 182
Big Wood River 30 52 Palisades 76 180
Big Wood River 30 53 Palisades 78 181
Big Wood River 30 b4 Palisades 77 180
Birch Creek 26 145 Portneuf River 102 121
Birch Creek 26 146 Raft River 93 77
Birch Creek 26 147 Raft River 93 78
Birch Creek 26 148 Raft River 93 79
Blackfoot River 85 1562 Raft River 94 76
Blackfoot River 85 153 Raft River 94 77
Blackfoot River 86 151 Raft River 94 79
Blackfoot River 86 152 Raft River 94 80
Blackfoot River 87 151 Raft River 94 81

Camas/Beaver Creeks 19 183 Raft River 95 81

Camas/Beaver Creeks 19 184 Raft River 95 82

Camas/Beaver Creeks 19 185 Raft River 96 82

Camas/Beaver Creeks 20 198 Raft River 96 83
Camas/Beaver Creeks 20 199 Rexburg Bench 85 194
Camas/Beaver Creeks 21 199 Rexburg Bench &5 195
Camas/Beaver Creeks 21 200 Rexburg Bench 65 196
Camas/Beaver Creeks 22 200 Rexburg Bench 65 197
Camas/Beaver Creeks 22 201 Rexburg Bench 66 192
Clover Creek 23 15 Rexburg Bench 66 193
Clover Creek 23 16 Rexburg Bench 66 194
Goose Creek 100 34 Rexburg Bench 66 197
Goose Creek 100 35 Rexburg Bench 67 190
Goose Creek 101 36 Rexburg Bench 67 191
Goose Creek 101 37 Rexburg Bench 67 192
Henrys Fork 35 200 Rexburg Bench 68 187
Henrys Fork 36 200 Rexburg Bench 68 188
Henrys Fork 37 200 Rexhurg Bench 68 189
Henrys Fork 38 200 Rexburg Bench 68 190
Henrys Fork 38 201 Rock Creek 96 90
Henrys Fork 39 201 Rock Creek a7 88

A&B 3200



Tributary
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Henrys Fork
Lincoin/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoln/Ross Creeks
Lincoin/Ross Creeks
Lincoln/Ross Creeks
Little Lost River
Little Lost River
Little Lost River
Little Lost River
Little Lost River
Litile Lost River
Little Lost River
Little Lost River
Rock Creek
Rock Creek
Rock Creek
Rock Creek
Rock Creek
Rock Creek
Rock Creek

Model
Row
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54
55
58
93
93
95
95
06
06
97
97
98
o8
23
23
24
24
24
25
25
25
97
97
97
98
98
99
99

Model
Column
201
202
202
202
202
201
201
201
202
202
202
201
201
200
199
200
199
199
141
142
135
136
134
135
133
134
132
133
126
127
127
128
129
129
130
131
89
91
92
92
93
93
94

Tributary

Silver Creek
Silver Creek
Silver Creek
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Teton River
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorn Creek
Thorm Creek
Thorn Creek
Thorn Creek
Thorn Creek
Willow Creek
Willow Creek
Willow Creek
Willow Creek
Willow Creek
Wiliow Creek
Wiliow Creek
Willow Creek
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Model
Row
33
23
33
61
82
62
62
62
63
64
65
66
67
67
61
62
62
62
62
63
64
65
66
67
87
32
33
33
76
76
77
77
77
75
75
75

Model
Column
65
66
67
202
199
200
201
202
199
199
199
199
108
199
202
199
200
201
202
199
199
199
199
198
199
32
33
34
175
176
176
177
178
173
174
175
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Table A-2. List of Perched reaches and associated model cells.

Tributary Name
Basin 31 Fleod Control
Basin 31 Flood Control
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1

45
45
34
30
31
31
33
32
34
24
24
26
5
8
33
18
22
22
6
7
9
9
10
11
11
12
12
13
13
15
15
14
29
16
17
17
19
20
20
21
23
25
25
30
30
27
27
28
28
31

149
150
50

50

50

51

51

51

51

112
113
111
107
107
110
113
113
114
107
107
107
108
108
108
109
109
110
110
111
111
112
111
109
112
112
113
113
113
114
114
113
111
112
109
110
110
111
109
110
110
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Row Column Tributary Name

Basin 31 Flood Controi
Basin 31 Fload Control
Below Magic Reservair
Below Magic Reservoir
Below Magic Reservair
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Below Magic Reservoir
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1
Big Lost River 1

Row Column
45 149
45 150
34 50
30 50
31 50
31 51
33 51
32 51
34 51
24 112
24 113
26 11
5 107
8 107
33 110
18 113
22 113
22 114
6 107
7 107
9 107
9 108
10 108
11 108
11 109
12 109
12 110
13 110
13 111
15 111
15 112
14 111
29 108
16 112
17 112
17 113
19 113
20 113
20 114
21 114
23 113
25 111
25 112
30 109
30 110
27 110
27 11
28 109
28 110
31 110
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Appendix TablesA - 5

Table A-2 (continued). List of Perched reaches and associated model cells.

Tributary Name Row Column Tributary Name Row Column
Big Lost River 1 32 110 Big Wood River Below Gooding 37 17
Big Lost River 1 34 109 Big Wood River Below Gooding 37 18
Big Lost River 1 34 110 Big Wood River Below Gooding 37 19
Big Lost River 1 35 110 Big Wood River Below Gooding 36 19
Big Lost River 2 38 110 Big Wood River Below Gooding 36 20
Big Lost River 2 38 111 Big Woed River Below Gooding 35 20
Big Lost River 2 42 112 Big Woed River Below Gooding 38 17
Big Lost River 2 42 113  Big Wood River Below Gooding 38 18
Big Lost River 2 42 114  Birch Creek 27 144
Big Lost River 2 39 111 Birch Creek 27 145
Big Lost River 2 32 112 Birch Creek 26 145
Big Lost River 2 36 110  Birch Creek 28 144
Big Lost River 2 37 110  Birch Creek Hydropower Discharge 25 149
Big Lost River 2 40 111 Birch Creek Hydropower Discharge 25 150
Big Lost River 2 40 112  Birch Creek Hydropower Discharge 26 147
Big Lost River 2 41 112  Birch Creek Hydropower Discharge 26 148
Big Lost River 2 43 115 Birch Creek Hydropower Discharge 26 148
Big Lost River 2 43 114 Camas Creek 29 193
Big Lost River 2 44 115 Camas Creek 29 194
Big Lost River 3 45 116 Camas Creek 33 180
Big Lost River 3 45 117 Camas Creek 33 18t
Big Lost River 3 45 148 Camas Creek 33 182
Big Lost River 3 45 119 Camas Creek 33 183
Big Lost River 3 45 120  Camas Creek a3 184
Big Lost River 3 45 121 Camas Creek 35 172
Big Lost River 3 45 122 Camas Creek 35 173
Big Lost River 3 45 123 Camas Creek 35 174
Big Lost River 3 45 124 Camas Creek 35 175
Big Lost River 4 39 131 Camas Creek 36 190
Big Lost River 4 39 132 Camas Creek 30 191
Big Lost River 4 42 129 Camas Creek 30 192
Big Lost River 4 42 130 Camas Creek 30 193
Big Lost River 4 38 132 Camas Creek 31 189
Big Lost River 4 4 130 Camas Creek 31 190
Big Lost River 4 4 131 Camas Creek A 181
Big Lost River 4 40 131 Camas Creek 31 192
Big Lost River 4 43 128 Camas Creek 32 184
Big Lost River 4 43 129 Camas Creek 32 185
Big Lost River 4 44 127 Camas Creek 32 186
Big Lost River 4 44 128 Camas Creek 32 187
Big Lost River 4 45 125 Camas Creek 32 188
Big Lost River 4 45 126 Camas Creek 32 189
Big Lost River 4 45 127 Camas Creek 34 173
Big Lost River Flood Control 48 116 Camas Creek 34 174
Big Lost River Flood Contral 47 115 Camas Creek 34 175
Big Lost River Flood Control 46 115 Camas Creek 34 176
Big Lost River Flood Control 46 116 Camas Creek 34 177
Big Wood River Below Gooding 34 20 Camas Creek 34 178
Big Wood River Below Gooding 34 21 Camas Creek 34 179
Big Wood River Below Gooding 37 16  Camas Creek 34 180

A&B 3203



Appendix TablesA - 6

Table A-2 (continued). List of Perched reaches and associated model cells.

Tributary Name Row Column Tributary Name Row Column
Camas Creek 34 181 Little Wood River 1 43 59
Camas Creek 36 172 Little Wood River 1 43 60
Camas Creek 37 171  Little Wood River 1 44 57
Camas Creek 37 172 Little Wood River 1 44 58
Camas Creek 38 170 Little Wood River 1 44 59
Camas Creek 38 171 Little Wood River 1 45 54
Camas National Wildlife Refuge 41 165  Little Wood River 1 45 55
Camas National Wildlife Refuge 41 166  Littie Wood River 1 45 56
Camas Nafional Wildlife Refuge 41 187  Little Wood River 1 45 57
Camas National Wildlife Refuge 40 166  Little Wood River 2 45 53
Camas Naticnal Wildlife Refuge 42 165 Litlle Wood River 2 46 41
Camas National Wildlife Refuge 42 167 Little Wood River 2 46 42
Little Lost River 24 128 Little Wood River 2 46 43
Littie Lost River 29 128 Little Wood River 2 44 39
Little Lost River 29 129 Little Wood River 2 44 48
Little Lost River 25 128 Little Wood River 2 45 38
Little Lost River 26 128 Little Wood River 2 45 39
Little Lost River 27 128 Little Wood River 2 45 40
Little Lost River 28 128 Little Wood River 2 45 41
Little Lost River 30 129 Little Wood River 2 45 43
Little Lost River 31 129 Little Wood River 2 45 44
Little Lost River 33 129 Little Wood River 2 45 45
Little Lost River 32 129  Little Wood River 2 45 46
Little Lost River Flood Control 24 128  Little Wood River 2 45 47
Little Wood River 1 35 71 Little Wood River 2 45 48
Little Wood River 1 39 65  Little Wood River 2 45 49
Little Wood River 1 39 66  Little Wood River 2 45 50
Little Wood River 1 39 67 Little Wood River 2 45 51
Little Wood River 1 39 68  Little Wood River 2 45 52
Littie Wood River 1 33 71  Little Wood River 2 45 53
Little Wood River 1 34 71  Little Wood River 3 44 38
Little Wood River 1 38 71  Little Wood River 3 234 22
little Wood River 1 38 72  Little Wood River 3 34 23
Little Wood River 1 37 71 Little Wood River 3 34 24
Little Wood River 1 37 72  Little Wood River 3 39 31
Little Wood River 1 38 67  Little Wood River 3 39 32
Little Wood River 1 38 68  Little Wood River 3 39 33
Little Wood River 1 38 69  Little Wood River 3 398 34
Little Wood River 1 38 70  Little Wood River 3 41 35
Little Wood River 1 38 71 Little Wood River 3 41 36
Little Wood River 1 40 62  Little Wood River 3 35 24
Little Wood River 1 40 63  Little Wood River 3 42 36
Little Wood River 1 40 64  Little Wood River 3 42 37
Little Wood River 1 40 85  Little Wood River 3 36 24
Little Wood River 1 41 60  Little Wood River 3 36 25
Little Wood River 1 . 41 61 Littte Wood River 3 36 26
Little Wood River 1 41 82  Little Wood River 3 37 26
Littie Wood River 1 41 63  Little Wood River 3 a7 27
Little Wood River 1 42 60  Little Wood River 3 38 27
Little Wood River 1 42 61  Littie Wood River 3 38 28

A&B 3204



Table A-2 (concluded). List of Perched reaches and associated model cells.

Tributary Name

Little Wood River 3
Little Wood River 3
Little Wood River 3
Little Wood River 3
Little Wood River 3
Little Wood River 3
Little Wood River 3
Little Wood River 3
Littie Wood River 3

Lone Tree Flood Control (Camas Cree
Lone Tree Flood Contrel (Camas Cree

Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Medicine Lodge Creek
Milner-Pickets (TFCC)
Milner-Pickets (TFCC)
Milner-Pickets (TFCC)
Mitner-Pickets (TFCC)
Milner-Pickets (TFCC)
Milner-Pickets (TFCC)
Milner-Pickets (TFCC)
Mud Lake

Mud Lake

Mud Lake

Mud Lake

Mud Lake

Mud Lake

Mud Lake

Mud Lakse

Mud Lake

Murtaugh Lake
Murtaugh Lake

Row Column
38 29
38 30
38 31
40 33
40 34
40 35
43 37
43 38
44 38
31 191
32 191
22 170
22 171
21 171
19 171
20 171
23 169
23 170
24 169
25 167
25 168
25 169
26 167
79 33
79 39
78 34
78 35
78 36
78 37
78 38
39 158
39 157
41 158
41 159
41 180
40 157
40 158
40 159
40 180
79 33
80 33
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Appendix TablesA - 8

Table A-3. List of canals and associated model cells.

Canal Name Row Column Canal Name Row Column
Northside Main 54 31 Milner Gooding 58 38
Northside Main 54 32 Milner Gooding 60 39
Northside Main 41 25 Milner Gooding 60 40
Northside Main 41 26 Milner Gooding 59 38
Northside Main 42 26 Milner Gooding 59 39
Northside Main 46 27 Miiner Gooding 61 40
Northside Main 40 24 Milner Gooding 81 41
Northside Main 40 25 Milner Gooding B2 41
Northside Main 43 26 Milner Gooding 63 41
Northside Main 44 26 Milner Gooding 63 42
Northside Main 44 27 Milner Gooding 64 40
Northside Main 45 27 Milner Gooding 64 41
Northside Main 69 37 Milner Gooding 65 40
Northside Main 47 27 Milner Gooding 73 43
Northside Main 53 3 Milner Gooding 73 44
Northside Main 85 32 Milner Gooding 74 42
Northside Main 55 33 Milner Gooding 74 43
Northside Main 56 33 Milner Gooding 75 43
Northside Main 57 33 Aberdeen Springfield 79 115
Northside Main 60 33 Aberdeen Springfield 79 116
Northside Main 60 34 Aberdeen Springfield 79 117
Northside Main 59 33 Aberdeen Springfield 79 126
Northside Main 61 34 Aberdeen Springfield 78 127
Northside Main 62 34 Aberdeen Springfield 78 128
Nerthside Main 62 35 Aberdeen Springfield 78 129
Northside Main 63 35 Aberdeen Springfietd 78 130
Northside Main 63 36 Aberdeen Springfield 78 131
Northside Main 64 36 Aberdeen Springfield 78 132
Northside Main 65 36 Aberdeen Springfield 78 133
Northside Main 66 35 Aberdeen Springfield 78 134
Northside Main 66 36 Aberdeen Springfield 78 135
Northside Main 87 35 Aberdeen Springfield 78 136
Northside Main 67 36 Aberdeen Springfield 78 137
Northside Main 68 36 Aberdeen Springfield 78 138
Northside Main 68 37 Aberdeen Springfield 79 138
Northside Wilson Lake 72 39 Aberdeen Springfield 79 140
Northside Wilson Lake 70 37 Aberdeen Springfield 79 141
Northside Wilson Lake 70 38 Aberdeen Springfield 80 118
Northside Wilson Lake 71 38 Aberdeen Springfield 8c - 119
Northside Wilson Lake 71 39 Aberdeen Springfield 80 120
Milner Gooding 54 40 Aberdeen Springfield 30 121
Milner Gooding 54 41 Aberdeen Springfield 80 124
Milner Gooding 53 41 Aberdeen Springfield 80 125
Milner Gooding 55 39 Aberdeen Springfield 80 142
Milner Gooding 55 40 Aberdeen Springfield 80 143
Milner Gooding 56 39 Aberdeen Springfield 80 144
Milner Gooding 56 40 Aberdeen Springfield 80 145
Miiner Gooding 57 38 Aberdeen Springfield 81 122
Milner Goading 57 39 Aberdeen Springfield 81t 123
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Table A-3 (concluded). List of canals and associated model cells.

Canal Name

Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Main

Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Above Rim
Northside Laterals Abcve Rim
Northside Laterals Above Rim
Northside Laterals Above Rim

Row
48
48
48
48
41
41
41
42
48
43
49
49
49
39
40
40
40
40
40
45
45
43
43
43
44
44
45
48
50
50
50
50
47
47
47
47
47
47
47
47
51
51
51
52
52
52
52
53

Column
14
15
25
26
15
16
17
17
21
16
16
17
18
18
18
19
22
23
24
13
14
14
17
18
13
14
14
15
14
18
19
20
15
16
17
21
22
23
24
25
15
16
20
16
17
18
19
19

Appendix TablesA - 9
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Table A-9. Model cells with fixed pumping represented.
Column  Type of Fixed Point

Row
58
58
58
54
54
55
56
58
59
58
59
60
&7
71
38
40
42
38
35
35
35
35
33
34
34
34
34
36
36
37
37
37
37
37
37
38
38
38
38
38
38
39
39
39
39
39
39

Column
190
191
192
182
186
199
177
185
186
182
188
186
198
179
159
164
163
160

48
49
50
51
51
48
49
50
51
53
54
51
52
53
54
55
56
50
51
54
85
56
57
50
51
52
55
56
57

Appendix B—GIS/Fortran Recharge Tool B - 51

Type of Fixed Point

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Wells

Exchange Weills

Exchange Weils

Exchange Weills

Exchange Weils

Exchange Wells

Mud Lake Wells

Mud Lake Wells

Mud Lake Wells

Mud Lake Wells

Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment

Richfield Recharge Adjustment.

Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment

Row

40
40
40
40
40
40
41
41
41
41
41
41
41
41
42
42
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
44
45
45
45
45
45
45
46

50
51
52
55
56
57
50
51
52
53
54
55
56
57
48
49
50
51
52
53
54
55
56
57
48
49
50
51
52
53
54
55
56
48
49
50
51
52
53
54
55
56
45
47
48
50
51
54
47

Richfield Recharge Adjusiment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfleld Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfieid Recharge Adjustment
Richfieid Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
Richfield Recharge Adjustment
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Table A-9 (continued). Model cells with fixed pumping represented.

Row
10
10
11
11
12
12
12
13
13
14
14
14
15
15
16
16
16
17
18
18
20
20
21
21
22
22
23
23
24
24
24
25
25
25
25
26
26
26
26
27
28
29
29
30
30
31
31
31
32
32

Column
107
108
108
109
108
109
110
110
111
110
111
112
112
113
112
113
116
113
113
114
114
196
113
114
113
114

12
16
12
14
15
12
13
14
170
12
167
170
171
167
10
10
11
50
51
51
157
158
23
156

Appendix B—GIS/Fortran Recharge Tool B - 52

Type of Fixed Point

Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment

Row
32
33
33
33
33
34
34
34
34
34
35
35
35
35
35
36
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
38
39
40
40
40
40
41
41
41
41
41
42
42
42
42
42
42

Column Type of Fixed Paint

157
23
110
156
157
14
73
78
79
156
95
94
93
92
91
Q0
89
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
89
68
67
66
65
64
63
62
61
60
59
58
57
56
164

Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Weiland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
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Table A-9 (continued). Model cells with fixed pumping represented.

Row
42
42
42
43
43
43
43
45
45
51
51
52
52
53
53
53
54
55
55
55
56
57
58
58
59
60
80
60
60
61
61
61
61
62
62
62
62
63
63
63
64
64
65
85
65
65
66
66
67
67

Column
166
167
168
38
164
165
166
48
53
200
201
25
26
181
182
195
27
169
170
182
180
179
180
181
175
173
197
198
199
195
196
198
199
171
172
175
200
35
172
199
35
189
174
175
176
199
175
198
176
177

Appendix B—GIS/Fortran Recharge Tool B - 53

Type of Fixed Point
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment

Wetland Adjustment .

Wetland Adjustment
Wetland Adjustment
Wetland Adiustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetiand Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment

Row
68
88
69
70
70
71
73
73
74
74
78
78
79
80
81
81
81
81
82
82
82
82
82
83
84
84
85
85
85
85
85
85
85
85
85
86
86
86
86
86
87
87
88
88
88
88
89
90
90
Q0

Column
176
177
177
177
178
178
175
181
175
176
114
115
115
123
112
123
129
141
11
112
113
118
127
118
50
110
110
111
125
126
127
137
140
141
142
123
126
137
141
144
124
125
58
122
123
124
121
121
122
123

Type of Fixed Point
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Waetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjusiment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adiustment
Wetland Adiustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetiand Adjustment
Wetland Adjustment
Wetland Adjustment
Wetland Adjustment
Woetland Adjustment
Wetland Adjustment
Wetland Adjustment
Wetiand Adjustment
Wetland Adjustment
Wetland Adjustment
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Table A-9 (concluded). Model cells with fixed pumping represented.
Row Column Type of Fixed Paint

20 124  Wetland Adjustment
90 126 Wetland Adjustment
a0 126  Wetland Adjustment
90 127  Wetland Adjustment
91 120  Wetland Adjustment
91 123 Wetland Adjustment
91 124  Wetland Adjustment
91 125  Weiland Adjustment
91 127  Wetland Adjustment
92 105 Wetland Adjustment
92 112 Wetland Adjustment
92 118  Wetland Adjustment
92 119 Wetland Adjustment
93 88 Wetland Adjustment
93 96 Wetland Adjustment
93 104  Wetland Adjustment
93 111 Wetland Adjustment
93 112 Wetland Adjustment
93 113 Wetland Adjustment
93 119 Wetland Adjustment
94 96 Wetland Adjustment
94 98 Wetland Adjustment
94 100 Wetland Adjustment
94 101 Wetland Adjustment
94 102 Wetland Adjustment
84 104  Wetland Adjustment
94 113 Wetland Adjustment
94 114 Wetland Adjustment
24 119  Wetland Adjustment
95 19  Wetland Adjustment
95 124 Weiland Adjustment
95 125  Wetland Adjustment
96 97 Wetland Adjustment
96 119 Wetland Adjustment
96 120  Wetland Adjustment
08 120  Wetland Adjustment
09 110  Wetland Adjustment
99 111 Wetland Adjustment
100 110  Wetland Adjustment
100 111 Wetland Adjustment

A&B 3252



Appendix B—GIS/Fortran Recharge Tool B - 1

Appendix B—Description of the GIS/Fortran Recharge Tool

As part of the ESPAM upgrade, the Idaho Water Resources Research Institute at
University of Idaho developed a tool for calculating recharge and discharge for
MODFLOW ground water models using spatial data. The GIS/Fortran Recharge Tool
uses a combination of geographical information system (GIS) technology and a Fortran
program to process spatial data to calculate recharge and discharge to each model cell for
a ground water model.

The GIS Recharge Tool is independent of model grid or aquifer basin. The tool
was designed for use in basins with arid irrigation; however, the tool can easily be
adapted to basins with no irrigation. Spatial data inputs to the tool include the model grid,
precipitation, evapotranspiration, recharge on non-irrigated lands, land use, soil type and
irrigation. Additionally, line source and point source data such as canal seepage, river
seepage, tributary underflow and municipal pumping are entered as spatial data. The GIS
component of the tool intersects each component of data with the model grid and
generates ASCII output files which are input to the Fortran program. Figure B-1 shows
schematically how the GIS component of the tool functions.

The Fortran program uses the cell-by-cell information to calculate net aquifer
recharge/discharge for each model cell for each stress period and generates the
MODFLOW input files. Figure B-2 shows conceptually the individual components of
aquifer recharge and discharge which are accounted for by the GIS Recharge Tool.

The tool was developed primarily for use with the Enhanced Snake Plain Aquifer
Model but was designed to be applied in other basins as well. The tool design divides

functionality between spatial data analysis (the GIS component) and background
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computer processing (the Fortran component). This split of functionality allows the
analyst maximum flexibility in the processing of the aquifer recharge/discharge. By
segregating the background computer processing into a separate Fortran program, the
GIS/Fortran Recharge Tool can be used with a parameter estimation package such as
PEST enabling dual calibration of aquifer model parameters (transmissivity and
storativity) with model recharge.

GIS Component

The GIS component of the recharge tool allows creation of a new simulation and
scenario or creation of a simulation based on an existing simulation. Figure B-3 shows
the user interface for the GIS component of the tool. As the user builds a recharge data
set, the GIS component provides the user with pull-down menus for selection of desired
data files or data fields within a file. Figure B-4 shows the user interface for the GIS
component of the tool.

The GIS component of the recharge tool allows creation of a new simulation and
scenario or creation of a simulation based on an existing simulation. As the user begins
building a recharge data set, the GIS component provides the user with pull-down menus
for selection of desired data components. Figure B-3 shows the user interface for the GIS
component of the tool. Figure B-4 shows the selection of recharge components which the
user can choose to analyze. After selecting the recharge component to be analyzed, the
user is guided through selecting data files and fields within each file to be used for the
analysis. Figure B-5 shows a sample navigation window for locating a data file.

Figure B-6 shows a sample of the data components from the selected file

available for analysis. After identifying the data sources, the user selects the
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RunAnalysis button and the GIS component processes the selected data, generating the
input files for the Fortran component.

The GIS component is designed in a modular fashion, so that part of a recharge
data set can be built or modified independently of the rest of the data set. The user can
build part of a data set, close the tool, and resume processing of the same data setata
later time. The tool also allows easy modification of an existing data set, for scenario
generation, The tool was built for maximum flexibility in generation of model
recharge/discharge data.

Fortran Component

The Fortran component calculates recharge and discharge for each individual
ground water model cell for each stress period, based on the input data from the GIS
component. The Fortran component reads all of the data files created by the GIS
component which contain recharge andrdischarge information for each model grid cell.
Outputs of the Fortran component include the MODFLOW Well File or Recharge File, in
either binary or ASCII format, (for direct input to the ground water model} as well as
output of intermediate recharge variables such as evapotranspiration, precipitation, or
applied irrigation water for each model cell for each stress period, which can be viewed
using GIS software. This allows the analyst to graph the components of recharge spatially
or to graph totals through time, enabling full analysis of the recharge data for error-
checking as well as for hydrological analysis.

The Fortran component can be run solely to calculate recharge and discharge
values for a single model scenario, or it can be run in conjunction with parameter

estimation sofware such as PEST. Figure B-7 shows a flow diagram of how the
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GIS/Fortran Recharge Tool would be used for generation of recharge/discharge for a
single model scenario.

The recharge tool has also been designed to be run along with the model during
parameter estimation. Figure B-8 shows how the Fortran component would be included
in a parameter estimation loop using PEST. Inclusion in a parameter estimation loop
enables the user to estimate model recharge parameters such as tributary underflow,
percentage of canal leakage or aquifer recharge on non-irrigated lands along with the
traditional model parameters of transmissivity and storativity.

Tool Use

The GIS Recharge Tool provides an analyst with a powerful tool for generation of
model scenarios and different conceptual representations of aquifer recharge and
discharge. The feature of the tool which allows a scenario to be based on an existing
scenario enables the user to retain most of the input variables constant, varying only
selected items, in order to test different conceptual models of recharge and discharge.
This allows rapid generation of complex recharge/discharge scenarios for a ground water
model, which is particularly useful during both model parameterization and model use.

In addition to generation of recharge and discharge for ground water models, the
GIS Recharge Tool can be used to estimate the impacts to a regional aquifer from large-
scale changes such as climate changes or changes in land use. By modifying the spatial
inputs to the GIS Component, the user can create scenarios which represent significant
changes in land use or natural precipitation or evaporation, then linking with the Fortran

Component to predict the changes to aquifer recharge/discharge caused by these basin
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changes. This makes the GIS Recharge Tool a powerful tool for assessing natural and

management changes of a groundwater basin.
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